2,308 research outputs found
Testing the validity of the effective rate constant approximation for surface reaction with transport
AbstractWhen one incorporates transport effects into a surface-volume reaction, an integrodifferential equation for the bound state concentration occurs. Such a form is inconvenient for data analysis. An effective rate constant approximation for the solution is correct to O(Da2) as the Damköhler number Da → 0. A numerical simulation of the integrodifferential equation is performed which shows that the effective rate constant approximation is useful even outside this regime
Bioinspired low-frequency material characterisation
New-coded signals, transmitted by high-sensitivity broadband transducers in the 40–200 kHz range, allow subwavelength material discrimination and thickness determination of polypropylene, polyvinylchloride, and brass samples. Frequency domain spectra enable simultaneous measurement of material properties including longitudinal sound velocity and the attenuation constant as well as thickness measurements. Laboratory test measurements agree well with model results, with sound velocity prediction errors of less than 1%, and thickness discrimination of at least wavelength/15. The resolution of these measurements has only been matched in the past through methods that utilise higher frequencies. The ability to obtain the same resolution using low frequencies has many advantages, particularly when dealing with highly attenuating materials. This approach differs significantly from past biomimetic approaches where actual or simulated animal signals have been used and consequently has the potential for application in a range of fields where both improved penetration and high resolution are required, such as nondestructive testing and evaluation, geophysics, and medical physics
Fibre optic sensors for high speed hypervelocity impact studies and low velocity drop tests
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG
Low-lying excitations of a trapped rotating Bose-Einstein condensate
We investigate the low-lying excitations of a weakly-interacting,
harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit
where the angular mometum of the system is much less than the number of the
atoms in the trap. We show that in the asymptotic limit the
excitation energy, measured from the energy of the lowest state, is given by
, where is the number of octupole
excitations and is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR
The genetic structure of Nautilus pompilius populations surrounding Australia and the Philippines.
Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST =0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST =0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present-day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks. This article is protected by copyright. All rights reserved
Social Dimensions of Urban Flood Experience, Exposure, and Concern
With growing urban populations and climate change, urban flooding is an important global issue, even in dryland regions. Flood risk assessments are usually used to identify vulnerable locations and populations, flooding experience patterns, or levels of concern about flooding, but rarely are all of these approaches combined. Furthermore, the social dynamics of flood concerns, exposure, and experience are underexplored. We combined geographic and survey data on household‐level measures of flood experience, concern, and exposure in Utah\u27s urbanizing Wasatch Front. We asked: (1) Are socially vulnerable groups more likely to be exposed to flood risk? (2) How common are flooding experiences among urban residents, and how are these experiences related to sociodemographic characteristics and exposure? and (3) How concerned are urban residents about flooding, and does concern vary by exposure, flood experience, and sociodemographic characteristics? Although floodplain residents were more likely to be White and have higher incomes, respondents who were of a racial/ethnic minority, were older, had less education, and were living in floodplains were more likely to report flood experiences and concern about flooding. Flood risk management approaches need to address social as well as physical sources of vulnerability to floods and recognize social sources of variation in flood experiences and concern
The Hahn Quantum Variational Calculus
We introduce the Hahn quantum variational calculus. Necessary and sufficient
optimality conditions for the basic, isoperimetric, and Hahn quantum Lagrange
problems, are studied. We also show the validity of Leitmann's direct method
for the Hahn quantum variational calculus, and give explicit solutions to some
concrete problems. To illustrate the results, we provide several examples and
discuss a quantum version of the well known Ramsey model of economics.Comment: Submitted: 3/March/2010; 4th revision: 9/June/2010; accepted:
18/June/2010; for publication in Journal of Optimization Theory and
Application
Operator-Algebraic Approach to the Yrast Spectrum of Weakly Interacting Trapped Bosons
We present an operator-algebraic approach to deriving the low-lying
quasi-degenerate spectrum of weakly interacting trapped N bosons with total
angular momentum \hbar L for the case of small L/N, demonstrating that the
lowest-lying excitation spectrum is given by 27 g n_3(n_3-1)/34, where g is the
strength of the repulsive contact interaction and n_3 the number of excited
octupole quanta. Our method provides constraints for these quasi-degenerate
many-body states and gives higher excitation energies that depend linearly on
N.Comment: 7 pages, one figur
Perturbative spectrum of Trapped Weakly Interacting Bosons in Two Dimensions
We study a trapped Bose-Einstein condensate under rotation in the limit of
weak, translational and rotational invariant two-particle interactions. We use
the perturbation-theory approach (the large-N expansion) to calculate the
ground-state energy and the excitation spectrum in the asymptotic limit where
the total number of particles N goes to infinity while keeping the total
angular momentum L finite. Calculating the probabilities of different
configurations of angular momentum in the exact eigenstates gives us a clear
view of the physical content of excitations. We briefly discuss the case of
repulsive contact interaction.Comment: Revtex, 10 pages, 1 table, to appear in Phys. Rev.
Low-Lying Excitations from the Yrast Line of Weakly Interacting Trapped Bosons
Through an extensive numerical study, we find that the low-lying,
quasi-degenerate eigenenergies of weakly-interacting trapped N bosons with
total angular momentum L are given in case of small L/N and sufficiently small
L by E = L hbar omega + g[N(N-L/2-1)+1.59 n(n-1)/2], where omega is the
frequency of the trapping potential and g is the strength of the repulsive
contact interaction; the last term arises from the pairwise repulsive
interaction among n octupole excitations and describes the lowest-lying
excitation spectra from the Yrast line. In this case, the quadrupole modes do
not interact with themselves and, together with the octupole modes, exhaust the
low-lying spectra which are separated from others by N-linear energy gaps.Comment: 5 pages, RevTeX, 2 figures, revised version, submitted to PR
- …