46 research outputs found

    The Oldest Case of Decapitation in the New World (Lapa do Santo, East-Central Brazil)

    Get PDF
    We present here evidence for an early Holocene case of decapitation in the New World (Burial 26), found in the rock shelter of Lapa do Santo in 2007. Lapa do Santo is an archaeological site located in the Lagoa Santa karst in east-central Brazil with evidence of human occupation dating as far back as 11.7-12.7 cal kyBP (95.4% interval). An ultra-filtered AMS age determination on a fragment of the sphenoid provided an age range of 9.1-9.4 cal kyBP (95.4% interval) for Burial 26. The interment was composed of an articulated cranium, mandible and first six cervical vertebrae. Cut marks with a v-shaped profile were observed in the mandible and sixth cervical vertebra. The right hand was amputated and laid over the left side of the face with distal phalanges pointing to the chin and the left hand was amputated and laid over the right side of the face with distal phalanges pointing to the forehead. Strontium analysis comparing Burial 26's isotopic signature to other specimens from Lapa do Santo suggests this was a local member of the group. Therefore, we suggest a ritualized decapitation instead of trophy-taking, testifying for the sophistication of mortuary rituals among hunter-gatherers in the Americas during the early Archaic period. In the apparent absence of wealth goods or elaborated architecture, Lapa do Santo's inhabitants seemed to use the human body to express their cosmological principles regarding death

    Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by Bilirubin at the Blood-CSF and Blood-Brain Barriers in the Gunn Rat

    Get PDF
    Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16–27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17–P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60–70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4th ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity

    Correction: International Society of Sports Nutrition position stand: Nutrient timing

    Get PDF
    Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake

    Subdivisions of the Auditory Midbrain (N. Mesencephalicus Lateralis, pars dorsalis) in Zebra Finches Using Calcium-Binding Protein Immunocytochemistry

    Get PDF
    The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches
    corecore