27 research outputs found

    An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility

    Get PDF
    Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA) while jasmonic acid (JA) regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect. To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of NahG plants (severely depleted of SA) was screened for suppression of susceptibility. The screen resulted in the identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild type levels.This work was supported by grant BIO201018896 from "Ministerio de Economia y Competitividad" (MINECO) of Spain and by grant ACOMP/2012/105 from "Generalitat Valenciana" to PT, a JAE-CSIC Fellowship to JVC, a FPI-MINECO to AD, and Fellowships from the European Molecular Biology Organization and the Human Frontier Science Program to BBHW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Dobón Alonso, A.; Wulff, BBH.; Canet Perez, JV.; Fort Rausell, P.; Tornero Feliciano, P. (2013). An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility. PLoS ONE. 1(8):55115-55115. https://doi.org/10.1371/journal.pone.0055115S551155511518Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47(1), 177-206. doi:10.1146/annurev.phyto.050908.135202Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., & Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. The Plant Journal, 25(1), 67-77. doi:10.1046/j.1365-313x.2001.00940.xGaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., … Ryals, J. (1993). Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science, 261(5122), 754-756. doi:10.1126/science.261.5122.754Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., … Ryals, J. (1994). A Central Role of Salicylic Acid in Plant Disease Resistance. Science, 266(5188), 1247-1250. doi:10.1126/science.266.5188.1247Lawton, K. (1995). Systemic Acquired Resistance inArabidopsisRequires Salicylic Acid but Not Ethylene. Molecular Plant-Microbe Interactions, 8(6), 863. doi:10.1094/mpmi-8-0863Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340-358. doi:10.1016/0042-6822(61)90319-1Pieterse, C. M. ., & van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science, 4(2), 52-58. doi:10.1016/s1360-1385(98)01364-8Fonseca, S., Chico, J. M., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5), 539-547. doi:10.1016/j.pbi.2009.07.013Ton, J., De Vos, M., Robben, C., Buchala, A., Métraux, J.-P., Van Loon, L. C., & Pieterse, C. M. J. (2002). Characterization ofArabidopsisenhanced disease susceptibility mutants that are affected in systemically induced resistance. The Plant Journal, 29(1), 11-21. doi:10.1046/j.1365-313x.2002.01190.xCui, J., Bahrami, A. K., Pringle, E. G., Hernandez-Guzman, G., Bender, C. L., Pierce, N. E., & Ausubel, F. M. (2005). Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences, 102(5), 1791-1796. doi:10.1073/pnas.0409450102Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372-379. doi:10.1016/j.pbi.2007.06.003Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., & Métraux, J.-P. (2008). Characterization and Biological Function of the ISOCHORISMATE SYNTHASE2 Gene of Arabidopsis. Plant Physiology, 147(3), 1279-1287. doi:10.1104/pp.108.119420Tornero, P., Chao, R. A., Luthin, W. N., Goff, S. A., & Dangl, J. L. (2002). Large-Scale Structure –Function Analysis of the Arabidopsis RPM1 Disease Resistance Protein. The Plant Cell, 14(2), 435-450. doi:10.1105/tpc.010393Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., & Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. The Plant Cell, 6(12), 1845-1857. doi:10.1105/tpc.6.12.1845Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. The Plant Cell, 9(9), 1573-1584. doi:10.1105/tpc.9.9.1573Yu, I. -c., Parker, J., & Bent, A. F. (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proceedings of the National Academy of Sciences, 95(13), 7819-7824. doi:10.1073/pnas.95.13.7819Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A., & Dangl, J. L. (1994). Arabidopsis mutants simulating disease resistance response. Cell, 77(4), 565-577. doi:10.1016/0092-8674(94)90218-6Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338. doi:10.1093/jxb/err031Wang, D. (2005). Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308(5724), 1036-1040. doi:10.1126/science.1108791Ritter, C. (1995). TheavrRpm1Gene ofPseudomonas syringaepv.maculicolaIs Required for Virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 8(3), 444. doi:10.1094/mpmi-8-0444Debener, T., Lehnackers, H., Arnold, M., & Dangl, J. L. (1991). Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. The Plant Journal, 1(3), 289-302. doi:10.1046/j.1365-313x.1991.t01-7-00999.xGrant, M., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., … Dangl, J. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269(5225), 843-846. doi:10.1126/science.7638602Mindrinos, M., Katagiri, F., Yu, G.-L., & Ausubel, F. M. (1994). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell, 78(6), 1089-1099. doi:10.1016/0092-8674(94)90282-8Coego, A., Ramirez, V., Gil, M. J., Flors, V., Mauch-Mani, B., & Vera, P. (2005). An Arabidopsis Homeodomain Transcription Factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, Mediates Resistance to Infection by Necrotrophic Pathogens. The Plant Cell, 17(7), 2123-2137. doi:10.1105/tpc.105.032375Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., … van Loon, L. C. (1998). A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. The Plant Cell, 10(9), 1571-1580. doi:10.1105/tpc.10.9.1571Berger, S., Bell, E., & Mullet, J. E. (1996). Two Methyl Jasmonate-Insensitive Mutants Show Altered Expression of AtVsp in Response to Methyl Jasmonate and Wounding. Plant Physiology, 111(2), 525-531. doi:10.1104/pp.111.2.525Attaran, E., Zeier, T. E., Griebel, T., & Zeier, J. (2009). Methyl Salicylate Production and Jasmonate Signaling Are Not Essential for Systemic Acquired Resistance in Arabidopsis. The Plant Cell, 21(3), 954-971. doi:10.1105/tpc.108.063164Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., … Xie, D. (2009). The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. The Plant Cell, 21(8), 2220-2236. doi:10.1105/tpc.109.065730Mittal, S. (1995). Role of the Phytotoxin Coronatine in the Infection ofAmbidopsis thalianabyPseudomonas syringaepv.tomato. Molecular Plant-Microbe Interactions, 8(1), 165. doi:10.1094/mpmi-8-0165Genoud, T., & Métraux, J.-P. (1999). Crosstalk in plant cell signaling: structure and function of the genetic network. Trends in Plant Science, 4(12), 503-507. doi:10.1016/s1360-1385(99)01498-3Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., … Ryals, J. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. The Plant Journal, 10(1), 71-82. doi:10.1046/j.1365-313x.1996.10010071.xFeys, B., Benedetti, C. E., Penfold, C. N., & Turner, J. G. (1994). Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen. The Plant Cell, 751-759. doi:10.1105/tpc.6.5.751Sun, J., Xu, Y., Ye, S., Jiang, H., Chen, Q., Liu, F., … Li, C. (2009). Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation. The Plant Cell, 21(5), 1495-1511. doi:10.1105/tpc.108.064303He, Y., Fukushige, H., Hildebrand, D. F., & Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiology, 128(3), 876-884. doi:10.1104/pp.010843Shan, X., Zhang, Y., Peng, W., Wang, Z., & Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany, 60(13), 3849-3860. doi:10.1093/jxb/erp223Yoshida, Y., Sano, R., Wada, T., Takabayashi, J., & Okada, K. (2009). Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development, 136(6), 1039-1048. doi:10.1242/dev.030585Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383Berger, S., Bell, E., Sadka, A., & Mullet, J. E. (1995). Arabidopsis thaliana Atvsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Molecular Biology, 27(5), 933-942. doi:10.1007/bf00037021Feng, S., Ma, L., Wang, X., Xie, D., Dinesh-Kumar, S. P., Wei, N., & Deng, X. W. (2003). The COP9 Signalosome Interacts Physically with SCFCOI1 and Modulates Jasmonate Responses. The Plant Cell, 15(5), 1083-1094. doi:10.1105/tpc.010207Nawrath C, Métraux JP, Genoud T (2005) Chemical signals in plant resistance: salicylic acid. . In: Tuzun S, Bent E, editors. Multigenic and Induced Systemic Resistance in Plants. Dordrecht, Netherlands.: Springer US. pp. pp. 143–165.Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325-331. doi:10.1016/s1369-5266(02)00275-3Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C., & Grant, M. (2007). Arabidopsissystemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences, 104(3), 1075-1080. doi:10.1073/pnas.0605423104Canet, J. V., Dobón, A., Ibáñez, F., Perales, L., & Tornero, P. (2010). Resistance and biomass in Arabidopsis: a new model for Salicylic Acid perception. Plant Biotechnology Journal, 8(2), 126-141. doi:10.1111/j.1467-7652.2009.00468.xCasimiro, I., Marchant, A., Bhalerao, R. P., Beeckman, T., Dhooge, S., Swarup, R., … Bennett, M. (2001). Auxin Transport Promotes Arabidopsis Lateral Root Initiation. The Plant Cell, 13(4), 843-852. doi:10.1105/tpc.13.4.843Celenza, J. L., Grisafi, P. L., & Fink, G. R. (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development, 9(17), 2131-2142. doi:10.1101/gad.9.17.2131Traw, M. B., & Bergelson, J. (2003). Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis. Plant Physiology, 133(3), 1367-1375. doi:10.1104/pp.103.027086Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., & Kunkel, B. N. (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. The Plant Journal, 26(5), 509-522. doi:10.1046/j.1365-313x.2001.01050.xXie, D. (1998). COI1: An Arabidopsis Gene Required for Jasmonate-Regulated Defense and Fertility. Science, 280(5366), 1091-1094. doi:10.1126/science.280.5366.1091Ellis, C., & Turner, J. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta, 215(4), 549-556. doi:10.1007/s00425-002-0787-4Fernández-Arbaizar, A., Regalado, J. J., & Lorenzo, O. (2011). Isolation and Characterization of Novel Mutant Loci Suppressing the ABA Hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) Mutant During Germination and Seedling Growth. Plant and Cell Physiology, 53(1), 53-63. doi:10.1093/pcp/pcr174He, Y., Chung, E.-H., Hubert, D. A., Tornero, P., & Dangl, J. L. (2012). Specific Missense Alleles of the Arabidopsis Jasmonic Acid Co-Receptor COI1 Regulate Innate Immune Receptor Accumulation and Function. PLoS Genetics, 8(10), e1003018. doi:10.1371/journal.pgen.1003018Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W. L., Ma, H., … Xie, D. (2002). The SCFCOI1 Ubiquitin-Ligase Complexes Are Required for Jasmonate Response in Arabidopsis. The Plant Cell, 14(8), 1919-1935. doi:10.1105/tpc.003368Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., … Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. doi:10.1038/nature06006Grunewald, W., Vanholme, B., Pauwels, L., Plovie, E., Inzé, D., Gheysen, G., & Goossens, A. (2009). Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO reports, 10(8), 923-928. doi:10.1038/embor.2009.103Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., & Dong, X. (1997). The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 88(1), 57-63. doi:10.1016/s0092-8674(00)81858-9Century, K. S., Holub, E. B., & Staskawicz, B. J. (1995). NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proceedings of the National Academy of Sciences, 92(14), 6597-6601. doi:10.1073/pnas.92.14.6597Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565. doi:10.1038/35107108Lu, M., Tang, X., & Zhou, J.-M. (2001). Arabidopsis NHO1 Is Required for General Resistance against Pseudomonas Bacteria. The Plant Cell, 13(2), 437-447. doi:10.1105/tpc.13.2.437Ritter, C., & Dangl, J. L. (1996). Interference between Two Specific Pathogen Recognition Events Mediated by Distinct Plant Disease Resistance Genes. The Plant Cell, 251-257. doi:10.1105/tpc.8.2.251Tornero, P., & Dangl, J. L. (2002). A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. The Plant Journal, 28(4), 475-481. doi:10.1046/j.1365-313x.2001.01136.xMacho, A. P., Guevara, C. M., Tornero, P., Ruiz-Albert, J., & Beuzón, C. R. (2010). The Pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity. New Phytologist, 187(4), 1018-1033. doi:10.1111/j.1469-8137.2010.03381.xTon, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. The Plant Journal, 38(1), 119-130. doi:10.1111/j.1365-313x.2004.02028.xCANET, J. V., DOBÓN, A., ROIG, A., & TORNERO, P. (2010). Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant, Cell & Environment, 33(11), 1911-1922. doi:10.1111/j.1365-3040.2010.02194.xJohnson, C. M., Stout, P. R., Broyer, T. C., & Carlton, A. B. (1957). Comparative chlorine requirements of different plant species. Plant and Soil, 8(4), 337-353. doi:10.1007/bf01666323Dobón, A., Canet, J. V., Perales, L., & Tornero, P. (2011). Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta, 234(4), 671-684. doi:10.1007/s00425-011-1436-6Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiology, 138(2), 1083-1096. doi:10.1104/pp.104.058032Konieczny, A., & Ausubel, F. M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 4(2), 403-410. doi:10.1046/j.1365-313x.1993.04020403.xBell, C. J., & Ecker, J. R. (1994). Assignment of 30 Microsatellite Loci to the Linkage Map of Arabidopsis. Genomics, 19(1), 137-144. doi:10.1006/geno.1994.1023Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T. Z., Garcia-Hernandez, M., Foerster, H., … Huala, E. (2007). The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research, 36(Database), D1009-D1014. doi:10.1093/nar/gkm965Jürgens G, Mayer U, Torres Ruiz RA, Berleth T, Mísera S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development (Supplement 1) : 27–38.Huang, W. E., Wang, H., Zheng, H., Huang, L., Singer, A. C., Thompson, I., & Whiteley, A. S. (2005). Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environmental Microbiology, 7(9), 1339-1348. doi:10.1111/j.1462-5822.2005.00821.xDeFraia, C. T., Schmelz, E. A., & Mou, Z. (2008). A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. Plant Methods, 4(1), 28. doi:10.1186/1746-4811-4-28Chenna, R. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497-3500. doi:10.1093/nar/gkg50

    Stem rust resistance in wheat is suppressed by a subunit of the mediator complex

    Get PDF
    Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat. Stem rust is an important disease of wheat and resistance present in some cultivars can be suppressed by the SuSr-D1 locus. Here the authors show that SuSr-D1 encodes a subunit of the Mediator Complex and that nonsense mutations are sufficient to abolish suppression and confer stem rust resistance

    Impact of early enteral versus parenteral nutrition on mortality in patients requiring mechanical ventilation and catecholamines: study protocol for a randomized controlled trial (NUTRIREA-2)

    Get PDF
    BACKGROUND: Nutritional support is crucial to the management of patients receiving invasive mechanical ventilation (IMV) and the most commonly prescribed treatment in intensive care units (ICUs). International guidelines consistently indicate that enteral nutrition (EN) should be preferred over parenteral nutrition (PN) whenever possible and started as early as possible. However, no adequately designed study has evaluated whether a specific nutritional modality is associated with decreased mortality. The primary goal of this trial is to assess the hypothesis that early first-line EN, as compared to early first-line PN, decreases day 28 all-cause mortality in patients receiving IMV and vasoactive drugs for shock. METHODS/DESIGN: The NUTRIREA-2 study is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock. Patients will be allocated at random to first-line PN for at least 72 hours or to first-line EN. In both groups, nutritional support will be started within 24 hours after IMV initiation. Calorie targets will be 20 to 25 kcal/kg/day during the first week, then 25 to 30 kcal/kg/day thereafter. Patients receiving PN may be switched to EN after at least 72 hours in the event of shock resolution (no vasoactive drugs for 24 consecutive hours and arterial lactic acid level below 2 mmol/L). On day 7, all patients receiving PN and having no contraindications to EN will be switched to EN. In both groups, supplemental PN may be added to EN after day 7 in patients with persistent intolerance to EN and inadequate calorie intake. We plan to recruit 2,854 patients at 44 participating ICUs. DISCUSSION: The NUTRIREA-2 study is the first large randomized controlled trial designed to assess the hypothesis that early EN improves survival compared to early PN in ICU patients. Enrollment started on 22 March 2013 and is expected to end in November 2015. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01802099 (registered 27 February 2013)

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    beta-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis

    Get PDF
    [EN] The plant hormone salicylic acid (SA) is required for defense responses. NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) and NON RECOGNITION OF BTH-4 (NRB4) are required for the response to SA in Arabidopsis (Arabidopsis thaliana). Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, beta CA1 and beta CA2, are beta-carbonic anhydrase family proteins. Since double mutant beta ca1 beta ca2 plants did not show any obvious phenotype, we investigated other beta CAs and found that NRB4 also interacts with beta CA3 and beta CA4. Moreover, several beta CAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between beta CAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-beta CA1-NPR1. The quintuple mutant beta ca1 beta ca2 beta ca3 beta ca4 beta ca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.This study was supported by "Ministerio de Economia y Competitividad" of Spain (grant BIO2013-45444-P to PT, http://mmidi.mineco.gob.es/portal/site/MICINN/) and "Generalitat Valenciana" of Spain (grant ACOMP/2013/052 to PT, http://www.ceice.gva.es/web/ciencia/becas-ayudas-y-subvenciones-cientificas). MLC was awarded with a fellowship from CONICET (Argentina, http://convocatorias.conicet.gov.ar/becas/) and Erasmus Mundus Action 2, Arcoiris Project (EU, http://www.arcoiris.polito.it/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Medina-Puche, L.; Castelló Llopis, MJ.; Canet Perez, JV.; Lamilla, J.; Colombo, M.; Tornero Feliciano, P. (2017). beta-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0181820S12

    KIXBASE: A comprehensive web resource for identification and exploration of KIX domains.

    No full text
    The KIX domain has emerged in the last two decades as a critical site of interaction for transcriptional assembly, regulation and gene expression. Discovered in 1994, this conserved, triple helical globular domain has been characterised in various coactivator proteins of yeast, mammals and plants, including the p300/CBP (a histone acetyl transferase), MED15 (a subunit of the mediator complex of RNA polymerase II), and RECQL5 helicases. In this work, we describe the first rigorous meta analysis of KIX domains across all forms of life, leading to the development of KIXBASE, a predictive web server and global repository for detection and analysis of KIX domains. To our knowledge, KIXBASE comprises the largest online collection of KIX sequences, enabling assessments at the level of both sequence and structure, incorporating PSIPRED and MUSTER at the backend for further annotation and quality assessment. In addition, KIXBASE provides useful information about critical aspects of KIX domains such as their intrinsic disorder, hydrophobicity profiles, functional classification and annotation based on domain architectures. KIXBASE represents a significant enrichment of the currently annotated KIX dataset, especially in the plant kingdom, thus highlighting potential targets for biochemical characterization. The KIX webserver and database are both freely available to the scientific community, at http://www.nipgr.res.in/kixbase/home.php
    corecore