149 research outputs found

    Kaposiform hemangioendothelioma in tonsil of a child associated with cervical lymphangioma: a rare case report

    Get PDF
    Kaposiform hemangioendothelioma (KHE) is an uncommon vascular tumor of intermediate malignant potential, usually occurs in the extremities and retroperitoneum of infants and is characterized by its association with lymphangiomatosis and Kasabach-Merritt phenomenenon (KMP) in certain cases. It has rarely been observed in the head and neck region and at times, can present without KMP. Herein, we present an extremely uncommon case of KHE occurring in tonsil of a child, associated with a neck swelling, but unassociated with KMP. A 2-year-old male child referred to us with history of sore throat, dyspnoea and right-sided neck swelling off and on, since birth, was clinicoradiologically diagnosed with recurrent tonsillitis, including right sided peritonsillar abscess, for which he underwent right-sided tonsillectomy, elsewhere. Histopathological sections from the excised tonsillar mass were reviewed and showed a tumor composed of irregular, infiltrating lobules of spindle cells arranged in kaposiform architecture with slit-like, crescentic vessels. The cells displayed focal lumen formation containing red blood cells (RBCs), along with platelet thrombi and eosinophilic hyaline bodies. In addition, there were discrete foci of several dilated lymphatic vessels containing lymph and lymphocytes. On immunohistochemistry (IHC), spindle cells were diffusely positive for CD34, focally for CD31 and smooth muscle actin (SMA), the latter marker was mostly expressed around the blood vessels. Immunostaining for HHV8 was negative and Ki-67 (proliferation marker) displayed focal positivity. Diagnosis of KHE was made. Platelet count was towards lower side of range. Postoperative imaging showed discrete, multiple fluid containing lesions in the right neck that were high on T2-weighed sequences, on magnetic resonance imaging (MRI) and ipsilateral intraoral mucosal growth. Fine needle aspiration cytology (FNAC) smears from neck swelling showed blood, fluid and lymphocytes. Possibility of a coexisting lymphangioma was considered. The patient was offered sclerotherapy and is on follow-up. This case forms the second documented case of KHE at this site, along with its unique association with neck lymphangioma. KHE has distinct histopathological features and can be sorted out from its other differentials like juvenile hemangioma and Kaposi's sarcoma. IHC stains are useful in substantiating a definite diagnosis

    HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development.

    Get PDF
    Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis

    Lymphatic vessels assessment in feline mammary tumours

    Get PDF
    BACKGROUND: The lymphatic vessels play a crucial role in a variety of human cancers since tumour cell lymphatic invasion significantly influences prognosis. It is not known if pre-existing lymphatics are enough for tumour dissemination or de novo development is necessary. VEGFR-3 is an angiogenetic mediator for both lymphatic and blood vessels during embryonic development, and only for lymphatics after birth. VEGF is a mediator of both vasculogenesis and angiogenesis, regulates the growth of lymphatics in various experimental models, and is produced in many solid tumours. CD44 mediates hyaluronic acid (HA)-dependent cell adhesion: besides promoting invasion, this interaction also supports neoangiogenesis that indirectly stimulates tumour cell proliferation. The expression of VEGF-C (Vascular Endothelial Growth Factor – C), its receptor VEGFR-3 and CD44, were studied on feline mammary samples to assess the importance of lymphangiogenesis and lymphangiotrophism in neoplasia. METHODS: Samples were taken from six normal mammary glands (NMG), ten benign (BT) and 32 malignant (MT) tumours. Immunohistochemical laminin/VEGFR-3 double stain, VEGF-C and CD44 stains were applied to 4 μm-thick sections, and their expression evaluated in intratumoral/extratumoral and intramammary/extramammary fields. RESULTS: All groups revealed a higher number of lymphatics in the extratumoral/extramammary areas. VEGF-C expression in the epithelium paralleled the number of positive vessels in the NMG, BT and MT, whereas VEGF-C higher expression was noted in the intratumoral fields only in infiltrating MT. CD44 score was lower in extratumoral than intratumoral fields in tumours and showed a significant increase in extramammary/extratumoral fields from NMG to MT. Pearson test showed a significant and inversely proportional correlation between CD44 expression and the number of lymphatic vessels with VEGFR-3 in malignant infiltrating tumours. CONCLUSION: The number of both VEGFR-3 positive and negative lymphatics in the extratumoral and extramammary stroma was significantly higher than intratumoral and intramammary fields respectively in the NMG, BT and MT. This suggests a scant biological importance of intratumoral lymphatics while their higher number is due to the concentration of existing vessels following compression of the extratumoral stroma in spite of a non demonstrable increase from NMG to MT. The tumour model employed provided no evidence of lymphangiogenesis, and metastasis in the regional lymph node develops following the spread through the pre-existing lymphatic network

    The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer

    Get PDF
    A positive association between vascular endothelial growth factor-C (VEGF-C) expression and lymph node metastasis has been reported in several cancers. However, the relationship of VEGF-C and lymph node metastasis in some cancers, including non-small cell lung cancer (NSCLC), is controversial. We evaluated the VEGF-C and vascular endothelial growth factor receptor-3 (VEGFR-3) expression in NSCLC samples from patients who had undergone surgery between 1998 and 2002 using real-time quantitative RT–PCR and immunohistochemical staining. We failed to find a positive association between VEGF-C and VEGFR-3 mRNA expression and lymph node metastasis in NSCLC. An immunohistological study demonstrated that VEGF-C was expressed not only in cancer cells, but also in macrophages in NSCLC, and that VEGFR-3 was expressed in cancer cells, macrophages, type II pneumocytes and lymph vessels. The VEGF-C/VEGFR-3 ratio of the node-positive group was significantly higher than that of the node-negative group. Immunohistochemical staining showed that VEGFR-3 was mainly expressed in cancer cells. The immunoreactivity of VEGF-C and VEGFR-3 was roughly correlated to the mRNA levels of VEGF-C and VEGFR-3 in real-time PCR. VEGF-C mRNA alone has no positive association with lymph node metastasis in NSCLC. The VEGF-C/VEGFR-3 ratio was positively associated with lymph node metastasis in NSCLC. This suggests that VEGF-C promotes lymph node metastasis while being influenced by the strength of the VEGF-C autocrine loop, and the VEGF-C/VEGFR-3 ratio can be a useful predictor of lymph node metastasis in NSCLC

    Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus

    Get PDF
    Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV

    Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

    Get PDF
    Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV

    Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphangiomas are neoplasias of childhood. Their etiology is unknown and a causal therapy does not exist. The recent discovery of highly specific markers for lymphatic endothelial cells (LECs) has permitted their isolation and characterization, but expression levels and stability of molecular markers on LECs from healthy and lymphangioma tissues have not been studied yet. We addressed this problem by profiling LECs from normal dermis and two children suffering from lymphangioma, and also compared them with blood endothelial cells (BECs) from umbilical vein, aorta and myometrial microvessels.</p> <p>Methods</p> <p>Lymphangioma tissue samples were obtained from two young patients suffering from lymphangioma in the axillary and upper arm region. Initially isolated with anti-CD31 (PECAM-1) antibodies, the cells were separated by FACS sorting and magnetic beads using anti-podoplanin and/or LYVE-1 antibodies. Characterization was performed by FACS analysis, immunofluorescence staining, ELISA and micro-array gene analysis.</p> <p>Results</p> <p>LECs from foreskin and lymphangioma had an almost identical pattern of lymphendothelial markers such as podoplanin, Prox1, reelin, cMaf and integrin-α1 and -α9. However, LYVE-1 was down-regulated and VEGFR-2 and R-3 were up-regulated in lymphangiomas. Prox1 was constantly expressed in LECs but not in any of the BECs.</p> <p>Conclusion</p> <p>LECs from different sources express slightly variable molecular markers, but can always be distinguished from BECs by their Prox1 expression. High levels of VEGFR-3 and -2 seem to contribute to the etiology of lymphangiomas.</p

    Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells

    Get PDF
    Background: The expression of the Prospero homeodomain transcription factor (Prox1) in a subset of cardinal venous cells specifies the lymphatic lineage in mice. Prox1 is also indispensible for the maintenance of lymphatic cell fate, and is therefore considered a master control gene for lymphangiogenesis in mammals. In zebrafish, there are two prox1 paralogues, the previously described prox1 (also known as prox1a) and the newly identified prox1b. Principal Findings: To investigate the role of the prox1b gene in zebrafish lymphangiogenesis, we knocked-down prox1b and found that depletion of prox1b mRNA did not cause lymphatic defects. We also generated two different prox1b mutant alleles, and maternal-zygotic homozygous mutant embryos were viable and did not show any lymphatic defects. Furthermore, the expression of prox1b was not restricted to lymphatic vessels during zebrafish development. Conclusion: We conclude that Prox1b activity is not essential for embryonic lymphatic development in zebrafish

    Lymph vascular invasion in invasive mammary carcinomas identified by the endothelial lymphatic marker D2-40 is associated with other indicators of poor prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunohistochemical studies of lymphatic vessels have been limited by a lack of specific markers. Recently, the novel D2-40 antibody, which selectively marks endothelium of lymphatic vessels, was released. The aim of our study is to compare lymphatic and blood vessel invasion detected by hematoxylin and eosin (H&E) versus that detected by immunohistochemistry, relating them with morphologic and molecular prognostic factors.</p> <p>Methods</p> <p>We selected 123 cases of invasive mammary carcinomas stratified into three subgroups according to axillary lymph node status: macrometastases, micrometastases, and lymph node negative. Lymphatic (LVI) and blood (BVI) vessel invasion were evaluated by H&E and immunohistochemistry using the D2-40 and CD31 antibodies, and related to histologic tumor type and grade, estrogen and progesterone receptors, E-cadherin, Ki67, p53, and Her2/<it>neu </it>expression.</p> <p>Results</p> <p>LVI was detected in H&E-stained sections in 17/123 cases (13.8%), and in D2-40 sections in 35/123 cases (28.5%) (Kappa = 0.433). BVI was detected in H&E-stained sections in 5/123 cases (4.1%), and in CD31 stained sections in 19/123 cases (15.4%) (Kappa = 0.198). LVI is positively related to higher histologic grade (p = 0.013), higher Ki67 expression (p = 0.00013), and to the presence of macrometastases (p = 0.002), and inversely related to estrogen (p = 0.0016) and progesterone (p = 0.00017) receptors expression.</p> <p>Conclusion</p> <p>D2-40 is a reliable marker of lymphatic vessels and is a useful tool for lymphatic emboli identification in immunostained sections of breast carcinomas with higher identification rates than H&E. Lymphatic vessel invasion was related to other features (high combined histologic grade, high Ki67 score, negative hormone receptors expression) associated with worse prognosis, probable reflecting a potential for lymphatic metastatic spread and aggressive behavior.</p
    corecore