963 research outputs found

    Clearance of technetium-99m-DTPA and HRCT findings in the evaluation of patients with Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Clearance of inhaled technetium-labeled diethylenetriamine pentaacetate ((99m)Tc-DTPA) is a marker of epithelial damage and an index of lung epithelial permeability. The aim of this study was to investigate the role of (99m)Tc-DTPA scan in patients with Idiopathic Pulmonary Fibrosis (IPF). Our hypothesis is that the rate of pulmonary (99m)Tc-DTPA clearance could be associated with extent of High Resolution Computed Tomography (HRCT) abnormalities, cell differential of bronchoalveolar lavage fluid (BALF) and pulmonary function tests (PFTs) in patients with IPF. METHODS: We studied prospectively 18 patients (14 male, 4 female) of median age 67yr (range 55–81) with histologically proven IPF. HRCT scoring included the mean values of extent of disease. Mean values of these percentages represented the Total Interstitial Disease Score (TID). DTPA clearance was analyzed according to a dynamic study using a Venticis II radioaerosol delivery system. RESULTS: The mean (SD) TID score was 36 ± 12%, 3 patients had mild, 11 moderate and 4 severe TID. Abnormal DTPA clearance half-time (t(1/2)<40 min) was found in 17/18 (94.5%) [mean (SD) 29.1 ± 8.6 min]. TID was weakly correlated with the DTPA clearance (r = -0.47, p = 0.048) and with % eosinophils (r = 0.475, p = 0.05). No correlation was found between TID score or DTPA and PFTs in IPF patients. CONCLUSION: Our data suggest that (99m)Tc-DTPA lung scan is not well associated with HRCT abnormalities, PFTs, and BALF cellularity in patients with IPF. Further studies in large scale of patients are needed to define the role of this technique in pulmonary fibrosis

    Pathophysiology and pathogenesis of circadian rhythm sleep disorders

    Get PDF
    Metabolic, physiological and behavioral processes exhibit 24-hour rhythms in most organisms, including humans. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues. The transcription and translation feedback loops of multiple clock genes are involved in the molecular mechanism of the circadian system. Disturbed circadian rhythms are known to be closely related to many diseases, including sleep disorders. Advanced sleep phase type, delayed sleep phase type and nonentrained type of circadian rhythm sleep disorders (CRSDs) are thought to result from disorganization of the circadian system. Evaluation of circadian phenotypes is indispensable to understanding the pathophysiology of CRSD. It is laborious and costly to assess an individual's circadian properties precisely, however, because the subject is usually required to stay in a laboratory environment free from external cues and masking effects for a minimum of several weeks. More convenient measurements of circadian rhythms are therefore needed to reduce patients' burden. In this review, we discuss the pathophysiology and pathogenesis of CRSD as well as surrogate measurements for assessing an individual's circadian phenotype

    The association of RANTES polymorphism with severe acute respiratory syndrome in Hong Kong and Beijing Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemokines play important roles in inflammation and antiviral action. We examined whether polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS).</p> <p>Methods</p> <p>We tested the polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>for their associations with SARS in 495 Hong Kong Chinese SARS patients and 578 controls. Then we tried to confirm the results in 356 Beijing Chinese SARS patients and 367 controls.</p> <p>Results</p> <p><it>RANTES </it>-28 G allele was associated with SARS susceptibility in Hong Kong Chinese (<it>P </it>< 0.0001, OR = 2.80, 95%CI:2.11–3.71). Individuals with <it>RANTES </it>-28 CG and GG genotypes had a 3.28-fold (95%CI:2.32–4.64) and 3.06-fold (95%CI:1.47–6.39) increased risk of developing SARS respectively (<it>P </it>< 0.0001). This -28 G allele conferred risk of death in a gene-dosage dependent manner (<it>P </it>= 0.014) with CG and GG individuals having a 2.12-fold (95% CI: 1.11–4.06) and 4.01-fold (95% CI: 1.30–12.4) increased risk. For the replication of <it>RANTES </it>data in Beijing Chinese, the -28 G allele was not associated with susceptibility to SARS. However, -28 CG (OR = 4.27, 95%CI:1.64–11.1) and GG (OR = 3.34, 95%CI:0.37–30.7) were associated with admission to intensive care units or death due to SARS (<it>P </it>= 0.011).</p> <p>Conclusion</p> <p><it>RANTES </it>-28 G allele plays a role in the pathogenesis of SARS.</p

    The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome

    Get PDF
    BACKGROUND: Cytokines play important roles in antiviral action. We examined whether polymorphisms of IFN-γ,TNF-α and IL-10 affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS). METHODS: A case-control study was carried out in 476 Chinese SARS patients and 449 healthy controls. We tested the polymorphisms of IFN-γ,TNF-α and IL-10 for their associations with SARS. RESULTS: IFN-γ +874A allele was associated with susceptibility to SARS in a dose-dependent manner (P < 0.001). Individuals with IFN-γ +874 AA and AT genotype had a 5.19-fold (95% Confidence Interval [CI], 2.78-9.68) and 2.57-fold (95% CI, 1.35-4.88) increased risk of developing SARS respectively. The polymorphisms of IL-10 and TNF-α were not associated with SARS susceptibility. CONCLUSION: IFN-γ +874A allele was shown to be a risk factor in SARS susceptibility

    Culture Adaptation Alters Transcriptional Hierarchies among Single Human Embryonic Stem Cells Reflecting Altered Patterns of Differentiation

    Get PDF
    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal (‘Culture Adapted’) human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation

    Application of affymetrix array and massively parallel signature sequencing for identification of genes involved in prostate cancer progression

    Get PDF
    BACKGROUND: Affymetrix GeneChip Array and Massively Parallel Signature Sequencing (MPSS) are two high throughput methodologies used to profile transcriptomes. Each method has certain strengths and weaknesses; however, no comparison has been made between the data derived from Affymetrix arrays and MPSS. In this study, two lineage-related prostate cancer cell lines, LNCaP and C4-2, were used for transcriptome analysis with the aim of identifying genes associated with prostate cancer progression. METHODS: Affymetrix GeneChip array and MPSS analyses were performed. Data was analyzed with GeneSpring 6.2 and in-house perl scripts. Expression array results were verified with RT-PCR. RESULTS: Comparison of the data revealed that both technologies detected genes the other did not. In LNCaP, 3,180 genes were only detected by Affymetrix and 1,169 genes were only detected by MPSS. Similarly, in C4-2, 4,121 genes were only detected by Affymetrix and 1,014 genes were only detected by MPSS. Analysis of the combined transcriptomes identified 66 genes unique to LNCaP cells and 33 genes unique to C4-2 cells. Expression analysis of these genes in prostate cancer specimens showed CA1 to be highly expressed in bone metastasis but not expressed in primary tumor and EPHA7 to be expressed in normal prostate and primary tumor but not bone metastasis. CONCLUSION: Our data indicates that transcriptome profiling with a single methodology will not fully assess the expression of all genes in a cell line. A combination of transcription profiling technologies such as DNA array and MPSS provides a more robust means to assess the expression profile of an RNA sample. Finally, genes that were differentially expressed in cell lines were also differentially expressed in primary prostate cancer and its metastases

    Boundary work: An interpretive ethnographic perspective on negotiating and leveraging cross-cultural identity

    Get PDF
    The complexity of global organizations highlights the importance of members’ ability to span diverse boundaries that may be defined by organization structures, national borders, and/or a variety of cultures associated with organization, nation-based societal and work cultures, industries, and/or professions. Based on ethnographic research in a Japan–US binational firm, the paper describes and analyzes the boundary role performance of the firm\u27s Japanese members. It contributes toward theory on boundary spanning by introducing a “cultural identity negotiation” conceptual framework. We show boundary spanning as a process shaped through the interplay of the contextual issues that make a boundary problematic; an individual\u27s multiple repertoires of cultural knowledge; and the individual boundary spanner\u27s “negotiation”, through interaction with others, of his/her cultural identities – the sense of “who I am” as a cultural being that is fundamental to an individual\u27s self-concept. At the same time, we make transparent the epistemological and methodological foundations of an interpretive ethnographic approach, demonstrating its value for understanding complex organizational processes. Research findings have practical implications for the selection and training of an organization\u27s employees, particularly of persons who may be considered “bicultural”

    Challenges in Whole Exome Sequencing: An Example from Hereditary Deafness

    Get PDF
    Whole exome sequencing provides unprecedented opportunities to identify causative DNA variants in rare Mendelian disorders. Finding the responsible mutation via traditional methods in families with hearing loss is difficult due to a high degree of genetic heterogeneity. In this study we combined autozygosity mapping and whole exome sequencing in a family with 3 affected children having nonsyndromic hearing loss born to consanguineous parents. Two novel missense homozygous variants, c.508C>A (p.H170N) in GIPC3 and c.1328C>T (p.T443M) in ZNF57, were identified in the same ∌6 Mb autozygous region on chromosome 19 in affected members of the family. Both variants co-segregated with the phenotype and were absent in 335 ethnicity-matched controls. Biallelic GIPC3 mutations have recently been reported to cause autosomal recessive nonsyndromic sensorineural hearing loss. Thus we conclude that the hearing loss in the family described in this report is caused by a novel missense mutation in GIPC3. Identified variant in GIPC3 had a low read depth, which was initially filtered out during the analysis leaving ZNF57 as the only potential causative gene. This study highlights some of the challenges in the analyses of whole exome data in the bid to establish the true causative variant in Mendelian disease

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    • 

    corecore