285 research outputs found
Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor
Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium
The quality effects of agency staffing in residential aged care.
OBJECTIVES: In Australia, temporary agency workers are a relatively small but enduring component of the residential aged care workforce. However, evidence from other countries suggests reliance on agency workers has a detrimental effect on the quality of care (QoC). We examined whether QoC outcomes differ for Australian residential aged care facilities (RACFs) based on their reliance on agency care staff. METHODS: A retrospective observational study was conducted using de-identified datasets obtained under the legal authority of the Royal Commission into Aged Care Quality and Safety. Regression analysis was conducted using data comprising 6221 RACF-year observations, across 5 years (2015-2019), from 1709 unique RACFs in Australia. RESULTS: After controlling for other determinants of QoC, RACFs with a greater reliance on agency care staff have poorer QoC outcomes, with significantly higher rates of complaints, missing persons, reportable assaults, hospitalisations, and accreditation flags. CONCLUSIONS: Consistent with international evidence, we found that the QoC of Australian RACFs is sensitive to the reliance on agency staff in delivering direct care to residents. These findings illustrate the importance of workers' employment conditions, alongside other workforce characteristics, in driving the quality of residential aged care
Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection
Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections
Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines
Introduction: Overexpression of the receptor tyrosine kinase HER2 has been reported in around 25% of human breast cancers, usually indicating a poor prognosis. As a result, HER2 has become a popular target for therapy. However, despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments. It is therefore important to understand the underlying mechanism of resistance and to develop more effective therapeutic interventions for breast cancer.
Methods: The sensitivity of a panel of seven breast cancer cell lines to treatment with various types HER-family inhibitors alone, or in combination with a selection of other tyrosine kinase inhibitors (TKIs) or chemotherapeutic agents was determined using the Sulforhodamine B colorimetric assay. Receptor expression, cell-cycle distribution, cell signalling and cell migration were determined using flow cytometry, Western blot and Incucyte Zoom Live-Cell Analysis System respectively.
Results: Overall, breast cancer cells were more sensitive to treatment with the irreversible pan-HER family inhibitors, particularly afatinib and neratinib, than treatment with the first-generation reversible inhibitors. Of three HER-2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors (IC50s as low as 3 nM), while MDA-MB-453 was relatively resistant (lowest IC50 = 0.11 μM). When the HER-family inhibitors were combined with other agents such as NVP-AEW541 (an IGF-1R inhibitor), dasatinib (a Src inhibitor) or crizotinib (a c-Met/ALK inhibitor), such combination produced synergistic effects in some of the cell lines examined. Interestingly, co-targeting of Src and HER-family members in MDA-MB-453 cells led to synergistic growth inhibition, suggesting the importance of Src in mediating resistance to HER2-targeting agents. Finally, treatment with the irreversible HER family blockers and dasatinib were also most effective at inhibiting the migration of breast cancer cells.
Conclusion: We concluded that the irreversible inhibitors of HER-family members are generally more effective at inhibiting growth, downstream signalling and migration compared with reversible inhibitors, and that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation
TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease
Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection
Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations.We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust
Genes targeted by the estrogen and progesterone receptors in the human endometrial cell lines HEC1A and RL95-2
<p>Abstract</p> <p>Background</p> <p>When the steroid hormones estrogen and progesterone bind to nuclear receptors, they have transcriptional impact on target genes in the human endometrium. These transcriptional changes have a critical function in preparing the endometrium for embryo implantation.</p> <p>Methods</p> <p>382 genes were selected, differentially expressed in the receptive endometrium, to study their responsiveness of estrogen and progesterone. The endometrial cell lines HEC1A and RL95-2 were used as experimental models for the non-receptive and receptive endometrium, respectively. Putative targets for activated steroid hormone receptors were investigated by chromatin immunoprecipitation (ChIP) using receptor-specific antibodies. Promoter occupancy of the selected genes by steroid receptors was detected in ChIP-purified DNA by quantitative PCR (qPCR). Expression analysis by reverse transcriptase (RT)-PCR was used to further investigate hormone dependent mRNA expression regulation of a subset of genes.</p> <p>Results</p> <p>ChIP-qPCR analysis demonstrated that each steroid hormone receptor had distinct group of target genes in the endometrial cell lines. After estradiol treatment, expression of estrogen receptor target genes predominated in HEC1A cells (n = 137) compared to RL95-2 cells (n = 35). In contrast, expression of progesterone receptor target genes was higher in RL95-2 cells (n = 83) than in HEC1A cells (n = 7) after progesterone treatment. RT-PCR analysis of 20 genes demonstrated transcriptional changes after estradiol or progesterone treatment of the cell lines.</p> <p>Conclusions</p> <p>Combined results from ChIP-qPCR and RT-PCR analysis showed different patterns of steroid hormone receptor occupancy at target genes, corresponding to activation or suppression of gene expression after hormone treatment of HEC1A and RL95-2 cell lines.</p
Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans
<p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p
Isolation and identification of actin-binding proteins in Plasmodium falciparum by affinity chromatography
- …
