41 research outputs found
The host galaxies and explosion sites of long-duration gamma-ray bursts: Hubble Space Telescope near-infrared imaging
We present the results of a Hubble Space Telescope WFC3/F160WSnapshot survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z < 3. We have non-detections of hosts at the locations of four bursts. Sufficient accuracy to astrometrically align optical afterglowimages and determine the location of the LGRB within its hostwas possible for 31/35 detected hosts. In agreement with other work, we find the luminosity distribution of LGRB hosts is significantly fainter than that of a star formation rate-weighted field galaxy sample over the same redshift range, indicating LGRBs are not unbiasedly tracing the star formation rate. Morphologically, the sample of LGRB hosts is dominated by spiral-like or irregular galaxies. We find evidence for evolution of the population of LGRB hosts towards lower luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and superluminous supernova (SLSN) hosts. The galactocentric projectedoffset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst. © 2017 The Authors
Long gamma-ray bursts and core-collapse supernovae have different environments
When massive stars exhaust their fuel they collapse and often produce the
extraordinarily bright explosions known as core-collapse supernovae. On
occasion, this stellar collapse also powers an even more brilliant relativistic
explosion known as a long-duration gamma-ray burst. One would then expect that
long gamma-ray bursts and core-collapse supernovae should be found in similar
galactic environments. Here we show that this expectation is wrong. We find
that the long gamma-ray bursts are far more concentrated on the very brightest
regions of their host galaxies than are the core-collapse supernovae.
Furthermore, the host galaxies of the long gamma-ray bursts are significantly
fainter and more irregular than the hosts of the core-collapse supernovae.
Together these results suggest that long-duration gamma-ray bursts are
associated with the most massive stars and may be restricted to galaxies of
limited chemical evolution. Our results directly imply that long gamma-ray
bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9
February 2006, online publication 10 May 2006. Supplementary material
referred to in the text can be found at
http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new
version contains minor changes to match the final published versio
A very energetic supernova associated with the gamma-ray burst of 29 March 2003
Over the past five years evidence has mounted that long-duration (> 2 s)
gamma-ray bursts (GRBs)--the most brilliant of all astronomical
explosions--signal the collapse of massive stars in our Universe. This evidence
was originally based on the probable association of one unusual GRB with a
supernova, but now includes the association of GRBs with regions of massive
star formation in distant galaxies, the appearance of supernova-like 'bumps' in
the optical afterglow light curves of several bursts and lines of freshly
synthesized elements in the spectra of a few X-ray afterglows. These
observations support, but do not yet conclusively demonstrate, the idea that
long-duration GRBs are associated with the deaths of massive stars, presumably
arising from core collapse. Here we report evidence that a very energetic
supernova (a hypernova) was temporally and spatially coincident with a GRB at
redshift z = 0.1685. The timing of the supernova indicates that it exploded
within a few days of the GRB, strongly suggesting that core-collapse events can
give rise to GRBs, thereby favouring the 'collapsar' model.Comment: 19 pages, 3 figure
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
The gamma-ray burst GRB060614 requires a novel explosive process
Over the past decade our physical understanding of gamma-ray bursts (GRBs)
has progressed rapidly thanks to the discovery and observation of their
long-lived afterglow emission. Long-duration (T < 2 s) GRBs are associated with
the explosive deaths of massive stars (``collapsars''), which produce
accompanying supernovae, while the short-duration (T > 2 s) GRBs arise from a
different origin, which has been argued to be the merger of two compact
objects, either neutron stars or black holes. Here we present observations of
GRB060614, a 100-s long burst discovered by the Swift satellite, which require
the invocation of a new explosive process: either a massive ``collapsar'' that
powers a GRB without any associated supernova, or a new type of engine, as
long-lived as the collapsar but without any such massive stellar host. We also
discuss the properties of this burst's redshift z=0.125 host galaxy, which
distinguish it from other long-duration GRBs and suggest that an entirely new
type of GRB progenitor may be required
Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes?:Systematic review
background: It is unclear whether more timely cancer diagnosis brings favourable outcomes, with much of the previous evidence, in some cancers, being equivocal. We set out to determine whether there is an association between time to diagnosis, treatment and clinical outcomes, across all cancers for symptomatic presentations. methods: Systematic review of the literature and narrative synthesis. results: We included 177 articles reporting 209 studies. These studies varied in study design, the time intervals assessed and the outcomes reported. Study quality was variable, with a small number of higher-quality studies. Heterogeneity precluded definitive findings. The cancers with more reports of an association between shorter times to diagnosis and more favourable outcomes were breast, colorectal, head and neck, testicular and melanoma. conclusions: This is the first review encompassing many cancer types, and we have demonstrated those cancers in which more evidence of an association between shorter times to diagnosis and more favourable outcomes exists, and where it is lacking. We believe that it is reasonable to assume that efforts to expedite the diagnosis of symptomatic cancer are likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis and improved quality of life, although these benefits vary between cancers
Relativistic Binaries in Globular Clusters
Galactic globular clusters are old, dense star systems typically containing
10\super{4}--10\super{7} stars. As an old population of stars, globular
clusters contain many collapsed and degenerate objects. As a dense population
of stars, globular clusters are the scene of many interesting close dynamical
interactions between stars. These dynamical interactions can alter the
evolution of individual stars and can produce tight binary systems containing
one or two compact objects. In this review, we discuss theoretical models of
globular cluster evolution and binary evolution, techniques for simulating this
evolution that leads to relativistic binaries, and current and possible future
observational evidence for this population. Our discussion of globular cluster
evolution will focus on the processes that boost the production of hard binary
systems and the subsequent interaction of these binaries that can alter the
properties of both bodies and can lead to exotic objects. Direct {\it N}-body
integrations and Fokker--Planck simulations of the evolution of globular
clusters that incorporate tidal interactions and lead to predictions of
relativistic binary populations are also discussed. We discuss the current
observational evidence for cataclysmic variables, millisecond pulsars, and
low-mass X-ray binaries as well as possible future detection of relativistic
binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
Binary and Millisecond Pulsars
We review the main properties, demographics and applications of binary and
millisecond radio pulsars. Our knowledge of these exciting objects has greatly
increased in recent years, mainly due to successful surveys which have brought
the known pulsar population to over 1700. There are now 80 binary and
millisecond pulsars associated with the disk of our Galaxy, and a further 103
pulsars in 24 of the Galactic globular clusters. Recent highlights have been
the discovery of the first ever double pulsar system and a recent flurry of
discoveries in globular clusters, in particular Terzan 5.Comment: 77 pages, 30 figures, available on-line at
http://www.livingreviews.org/lrr-2005-