175 research outputs found

    Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model

    Full text link
    We revisit a model in which the ionization energy of a metal particle is associated with the work done by the image charge force in moving the electron from infinity to a small cut-off distance just outside the surface. We show that this model can be compactly, and productively, employed to study the size dependence of electron removal energies over the range encompassing bulk surfaces, finite clusters, and individual atoms. It accounts in a straightforward manner for the empirically known correlation between the atomic ionization potential (IP) and the metal work function (WF), IP/WF\sim2. We formulate simple expressions for the model parameters, requiring only a single property (the atomic polarizability or the nearest neighbor distance) as input. Without any additional adjustable parameters, the model yields both the IP and the WF within \sim10% for all metallic elements, as well as matches the size evolution of the ionization potentials of finite metal clusters for a large fraction of the experimental data. The parametrization takes advantage of a remarkably constant numerical correlation between the nearest-neighbor distance in a crystal, the cube root of the atomic polarizability, and the image force cutoff length. The paper also includes an analytical derivation of the relation of the outer radius of a cluster of close-packed spheres to its geometric structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text. Revised submission (added one more paragraph about alloy work functions): 18 double spaced pages + 8 separate figures. Accepted for publication in PR

    The Winter Worries of Bats : Past and Present Perspectives on Winter Habitat and Management of Cave Hibernating Bats

    Get PDF
    Winter is a time of fascinating changes in biology for cave-hibernating bats, but it is also a time of vulnerability. Unsurprisingly, assessments of winter habitat for these mammals and how it can be managed have been a focus of many researchers involved with the North American Society for Bat Research over the last 50 years. Over this time, a paradigm shift has occurred in the way scientists think about factors driving selection of winter habitat, especially temperature. To illustrate this change, we review three hypotheses seeking to explain microclimate selection in cavernicolous bats. The first, which we call the “Colder is Better Hypothesis,” posits that bats should select cold microclimates that minimize energy expenditure. The “Hibernation Optimization Hypothesis” suggests that bats should select microclimates that reduce expression of torpor to balance energy conservation against non-energetic costs of hibernation. Finally, the “Thrifty Female Hypothesis” asserts that females should select colder microclimates than males to conserve energy for reproduction. We discuss these hypotheses and the shift from viewing hibernation as a phenomenon driven solely by the need to conserve energy in the context of hibernacula management in North America. We focus on both historical and recent conservation threats, most notably alteration of thermal regimes and the disease white-nose syndrome. We urge against returning to an over-simplified view of winter habitat selection in response to our current conservation challenges.Peer reviewe

    Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    Get PDF
    INTRODUCTION: Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. METHODS: We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. RESULTS: We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. CONCLUSION: These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

    Phenylthiourea Specifically Reduces Zebrafish Eye Size

    Get PDF
    Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos

    The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene

    Get PDF
    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease comple

    Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error : the CREAM consortium

    Get PDF
    Peer reviewe

    Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial plant pathogens belonging to the <it>Xanthomonas </it>genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.</p> <p>Results</p> <p>We established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of <it>Xanthomonas </it>spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes.</p> <p>Conclusions</p> <p>These data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.</p
    corecore