546 research outputs found

    Gas accretion as the origin of chemical abundance gradients in distant galaxies

    Full text link
    It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included her

    Superintegrable systems with spin and second-order integrals of motion

    Full text link
    We investigate a quantum nonrelativistic system describing the interaction of two particles with spin 1/2 and spin 0, respectively. We assume that the Hamiltonian is rotationally invariant and parity conserving and identify all such systems which allow additional integrals of motion that are second order matrix polynomials in the momenta. These integrals are assumed to be scalars, pseudoscalars, vectors or axial vectors. Among the superintegrable systems obtained, we mention a generalization of the Coulomb potential with scalar potential V0=αr+3ℏ28r2V_0=\frac{\alpha}{r}+\frac{3\hbar^2}{8r^2} and spin orbital one V1=ℏ2r2V_1=\frac{\hbar}{2r^2}.Comment: 32 page

    Genetic and Environmental Determinants of Immune Response to Cutaneous Melanoma

    Get PDF
    The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with “low”, “intermediate”, and “high” immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-κB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNγ and NF-κB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. Significance: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival

    Analyzing derived metallicities and ionization parameters from model-based determinations in ionized gaseous nebulae

    Get PDF
    We analyze the reliability of oxygen abundances and ionization parameters obtained from different diagnostic diagrams. For this, we compiled from the literature observational emission line intensities and oxygen abundance of 446 star-forming regions whose O/H abundance was determined by direct estimation of electron temperature. The abundances compiled were compared with the values calculated in this work using different diagnostic diagrams in combination with results from a grid of photoionization models. We found that the [\ion{O}{iii}]/[\ion{O}{ii}] vs. [\ion{N}{ii}]/[\ion{O}{ii}], [\ion{O}{iii}]/Hβ\beta vs. [\ion{N}{ii}]/[\ion{O}{ii}], and ([\ion{O}{iii}]/Hβ\beta)/([\ion{N}{ii}]/Hα\alpha) vs. [\ion{S}{ii}]/[\ion{S}{iii}] diagnostic diagrams give O/H values close to the TeT_{\rm e}-method, with differences of about 0.04 dex and dispersion of about 0.3 dex. Similar results were obtained by detailed models but with a dispersion of 0.08 dex. The origin of the dispersion found in the use of diagnostic diagrams is probably due to differences between the real N/O-O/H relation of the sample and the one assumed in the models. This is confirmed by the use of detailed models that do not have a fixed N/O-O/H relation. We found no correlation between ionization parameter and the metallicity for the objects of our sample. We conclude that the combination of two line ratio predicted by photoionization models, one sensitive to the metallicity and another sensitive to the ionization parameter, which takes into account the physical conditions of star-forming regions, gives O/H estimates close to the values derived using direct detections of electron temperatures.Comment: 12 pages, 9 figures, accepted by MNRA

    Inhomogeneous magnetization in dipolar ferromagnetic liquids

    Full text link
    At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this structure for a cubic sample by the free minimization of an appropriate microscopic density functional using simulated annealing. We find a vortex structure resembling four domains separated by four domain walls whose thickness increases proportional to the system size L. There are indications that for large L the whole configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to a homogeneous magnetization for strong fields are analyzed, too.Comment: 17 postscript figures included, submitted to Phys. Rev.

    Interictal cerebral metabolism in partial epilepsies of neocortical origin

    Full text link
    We performed interietal [18F]fluorodeoxyglucose positron emission tomography (FDG PET) in 24 patients with partial epilepsy of neocortical origin. Two-thirds of patients had regions of hypometabolism. The zone of intracranially recorded electrographic ictal onset was always located in a region of hypometabolism, in those with hypometabolism. Hypometabolic regions in partial epilepsies of neocortical origin were usually associated with structural imaging abnormalities. Regional hypometabolism occasionally occurred without localizing ictal scalp EEG and cerebral magnetic resonance imaging findings, however. FDG PET may be useful in directing placement of intracranial electrodes for presurgical evaluation of refractory neocortical seizures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29049/1/0000082.pd

    Comparative genomics of isolates of a pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients

    Get PDF
    Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40-50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain's adaptability to varying conditions in the CF lung

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Ă… (250 Ă— 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    • …
    corecore