132 research outputs found

    Neuroprotective Activity of Leukemia Inhibitory Factor Is Relayed through Myeloid Zinc Finger-1 in a Rat Model of Stroke

    Get PDF
    The aim of this study was to determine whether leukemia inhibitory factor (LIF) exerts its neuroprotective effects through signal transduction of the transcription factor myeloid zinc finger-1 (MZF-1). According to the hypothesis of this study, MZF-1 mediates LIF-induced neuroprotective signaling during ELVO through increased expression and transcriptional activity. To determine the in vivo role of MZF-1 in LIF-induced neuroprotection, we used Genomatix software was used to MZF-1 sites in the promoter region of the rat superoxide dismutase 3 (SOD3) gene. Stroke was induced via middle cerebral artery occlusion, and animals were administered PBS or 125 μg/kg LIF at 6, 24, and 48 h after the injury. MZF-1 binding activity was measured using electrophoretic mobility shift assay (EMSA) and its expression/localization were determined using western blot and immunohistochemical analysis. To determine whether MZF-1 relays LIF-induced neuroprotection in vitro, primary cultured neurons were subjected to oxygen-glucose deprivation (OGD) after treatment with PBS or LIF. MZF-1 expression was measured in vitro using real time PCR and immunohistochemical staining. Transfection with siRNA was used to determine whether LIF protected cultured neurons against OGD after silencing MZF-1 expression. Four MZF-1 binding sites were identified by Genomatix, and EMSA confirmed in vivo binding activity in brain after MCAO. LIF significantly increased MZF-1 protein levels compared to PBS treatment at 72 h post-MCAO. In vivo nuclear localization of MZF-1 as well as co-localization of SOD3 and MZF-1 was observed in the cortical neurons of LIF-treated rats. Primary cultured neurons treated with LIF had significantly higher levels of MZF-1 mRNA and protein after LIF treatment compared to neurons treated with PBS. Finally, knockdown MZF-1 using siRNA counteracted the neuroprotective effects of LIF in vitro. These data demonstrate that LIF-mediated neuroprotection is dependent upon MZF-1 activity. Furthermore, these findings identify a novel neuroprotective pathway that employs MZF-1, a transcription factor associated with hematopoietic gene expression

    Primary histologic diagnosis using automated whole slide imaging: a validation study

    Get PDF
    BACKGROUND: Only prototypes 5 years ago, high-speed, automated whole slide imaging (WSI) systems (also called digital slide systems, virtual microscopes or wide field imagers) are becoming increasingly capable and robust. Modern devices can capture a slide in 5 minutes at spatial sampling periods of less than 0.5 micron/pixel. The capacity to rapidly digitize large numbers of slides should eventually have a profound, positive impact on pathology. It is important, however, that pathologists validate these systems during development, not only to identify their limitations but to guide their evolution. METHODS: Three pathologists fully signed out 25 cases representing 31 parts. The laboratory information system was used to simulate real-world sign-out conditions including entering a full diagnostic field and comment (when appropriate) and ordering special stains and recuts. For each case, discrepancies between diagnoses were documented by committee and a "consensus" report was formed and then compared with the microscope-based, sign-out report from the clinical archive. RESULTS: In 17 of 25 cases there were no discrepancies between the individual study pathologist reports. In 8 of the remaining cases, there were 12 discrepancies, including 3 in which image quality could be at least partially implicated. When the WSI consensus diagnoses were compared with the original sign-out diagnoses, no significant discrepancies were found. Full text of the pathologist reports, the WSI consensus diagnoses, and the original sign-out diagnoses are available as an attachment to this publication. CONCLUSION: The results indicated that the image information contained in current whole slide images is sufficient for pathologists to make reliable diagnostic decisions and compose complex diagnostic reports. This is a very positive result; however, this does not mean that WSI is as good as a microscope. Virtually every slide had focal areas in which image quality (focus and dynamic range) was less than perfect. In some cases, there was evidence of over-compression and regions made "soft" by less than perfect focus. We expect systems will continue to get better, image quality and speed will continue to improve, but that further validation studies will be needed to guide development of this promising technology

    Estimating genomic instability mediated by Alu retroelements in breast cancer

    Get PDF
    Alu-PCR is a relatively simple technique that can be used to investigate genomic instability in cancer. This technique allows identification of the loss, gain or amplification of gene sequences based on the analysis of segments between two Alu elements coupled with quantitative and qualitative analyses of the profiles obtained from tumor samples, surgical margins and blood. In this work, we used Alu-PCR to identify gene alterations in ten patients with invasive ductal breast cancer. Several deletions and insertions were identified, indicating genomic instability in the tumor and adjacent normal tissue. Although not associated with specific genes, the alterations, which involved chromosomal bands 1p36.23, 1q41, 11q14.3, 13q14.2, occurred in areas of well-known genomic instability in breast and other types of cancer. These results indicate the potential usefulness of Alu-PCR in identifying altered gene sequences in breast cancer. However, caution is required in its application since the Alu primer can produce non-specific amplification

    DNA Fingerprinting of Pearls to Determine Their Origins

    Get PDF
    We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry

    Astroglial Inhibition of NF-κB Does Not Ameliorate Disease Onset and Progression in a Mouse Model for Amyotrophic Lateral Sclerosis (ALS)

    Get PDF
    Motor neuron death in amyotrophic lateral sclerosis (ALS) is considered a “non-cell autonomous” process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1G93A ubiquitously and the dominant negative form of IκBα (IκBαAA) in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus

    Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3–5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy

    Reversals of fortune: path dependency, problem solving, and temporal cases

    Full text link
    Historical reversals highlight a basic methodological problem: is it possible to treat two successive periods both as independent cases to compare for causal analysis and as parts of a single historical sequence? I argue that one strategy for doing so, using models of path dependency, imposes serious limits on explanation. An alternative model which treats successive periods as contrasting solutions for recurrent problems offers two advantages. First, it more effectively combines analytical comparisons of different periods with narratives of causal sequences spanning two or more periods. Second, it better integrates scholarly accounts of historical reversals with actors’ own narratives of the past

    The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

    Get PDF
    The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination

    Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish

    Get PDF
    We thank Scott Colborne for his help in collecting bluegill, Dave Bridges for providing the R script to convert Ensemble IDs to stickleback homologs, and David Winter and Jeramia Ory for providing Python script used in the bioinformatics analyses. We thank Doug Haywick for producing Fig 1. We also thank Shawn Garner, Tim Hain, Lauren Kordonowy, and Lindsay Havens, and three anonymous reviewers for helpful comments on the manuscript.Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.Yeshttp://www.plosone.org/static/editorial#pee
    corecore