454 research outputs found

    Characterizing variations in soil particle size distribution in oasis farmlands-A case study of the Cele Oasis

    Get PDF
    Characterizing soil particle size distributions (PSD) and their variation is an important issue in environmental research. In this study, fractal theory was used to analyse the soil PSD and its variations in the Cele Oasis, which is located at the southern margin of the Tarim Basin. The characteristics of the soil PSD were then evaluated to identify the primary factors that influence soil PSD. The results showed that the fractal dimension (D) values ranged from 2.11 to 2.27, and that there were significant differences among groups. Furthermore, the D values showed a significant positive correlation with fine particles (<50 mu m) and soil organic matter contents. According to a comparative analysis of D values, the utilization years of farmlands had a significant influence on PSD, while the difference in the spatial distribution of farmlands did not. These results indicated that long-term and effective tillage management of the farmlands will be beneficial to keeping and improving the states of the soil PSD and other soil properties. (C) 2009 Elsevier Ltd. All rights reserved

    Ordination as a tool to characterize soil particle size distribution, applied to an elevation gradient at the north slope of the Middle Kunlun Mountains

    Get PDF
    Soil particle-size distribution (PSD) is one of the most fundamental physical attributes of soil due to its strong influence on other soil properties related to water movement, productivity, and soil erosion. Characterizing variation of PSD in soils is an important issue in environmental research. Using ordination methods to characterize particle size distributions (PSDs) on a small-scale is very limited. In this paper, we selected the Cele River Basin on the north slope of the Middle Kunlun Mountains as a study area and investigated vegetation and soil conditions from 1960 to 4070 m a.s.l. Soil particle-size distributions obtained by laser diffractometry were used as a source data matrix. The Canonical Correspondence Analysis (CCA) ordination was applied to analyse the variation characteristics of PSDs and the relationships between PSDs and environmental factors. Moreover, single fractal dimensions were calculated to support the interpretation of the ordination results. Our results indicate that a differentiation of 16 particle fractions can sufficiently characterize the PSDs in CCA biplots. Elevation has the greatest effect on PSDs: the soil fine fractions increase gradually with increasing elevation. In addition, soil pH, water and total salt content are significantly correlated with PSDs. CCA ordination biplots show that soil and vegetation patterns correspond with one another, indicating a tight link between soil PSDs and plant communities on a small scale in arid regions. The results of fractal dimensions analysis were rather similar to CCA ordination results, but they yielded less detailed information about PSDs. Our study shows that ordination methods can be beneficially used in research into PSDs and, combined with fractal measures, can provide comprehensive information about PSDs. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved

    The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes

    Get PDF
    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested

    The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes

    Get PDF
    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    Defining strawberry shape uniformity using 3D imaging and genetic mapping

    Get PDF
    Strawberry shape uniformity is a complex trait, influenced by multiple genetic and environmental components. To complicate matters further, the phenotypic assessment of strawberry uniformity is confounded by the difficulty of quantifying geometric parameters ‘by eye’ and variation between assessors. An in-depth genetic analysis of strawberry uniformity has not been undertaken to date, due to the lack of accurate and objective data. Nonetheless, uniformity remains one of the most important fruit quality selection criteria for the development of a new variety. In this study, a 3D-imaging approach was developed to characterise berry shape uniformity. We show that circularity of the maximum circumference had the closest predictive relationship with the manual uniformity score. Combining five or six automated metrics provided the best predictive model, indicating that human assessment of uniformity is highly complex. Furthermore, visual assessment of strawberry fruit quality in a multi-parental QTL mapping population has allowed the identification of genetic components controlling uniformity. A “regular shape” QTL was identified and found to be associated with three uniformity metrics. The QTL was present across a wide array of germplasm, indicating a potential candidate for marker-assisted breeding, while the potential to implement genomic selection is explored. A greater understanding of berry uniformity has been achieved through the study of the relative impact of automated metrics on human perceived uniformity. Furthermore, the comprehensive definition of strawberry shape uniformity using 3D imaging tools has allowed precision phenotyping, which has improved the accuracy of trait quantification and unlocked the ability to accurately select for uniform berries

    Assessment of dietary intake among pregnant women in a rural area of western China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adequate maternal nutrient intake during pregnancy is important to ensure satisfactory birth outcomes. There are no data available on the usual dietary intake among pregnant women in rural China. The present study describes and evaluates the dietary intake in a cohort of pregnant women living in two counties of rural Shaanxi, western China.</p> <p>Methods</p> <p>1420 pregnant women were recruited from a trial that examined the effects of micronutrient supplementation on birth outcomes. Dietary information was collected at the end of their trimester or after delivery with an interviewed-administrated semi-quantitative food frequency questionnaire (FFQ). Nutrients intake was calculated from the FFQ and compared to the Estimated Average Requirements (EAR). The EAR cut-offs based on the Chinese Nutrition Society Dietary Reference Intakes (DRIs) were used to assess the prevalence of inadequate dietary intakes of energy, protein, calcium, zinc, riboflavin, vitamin C and folate. Mann-Whitney U and Kruskal Wallis tests were used to compare nutrient intakes across subgroups.</p> <p>Results</p> <p>The mean nutrient intakes assessed by the FFQ was similar to those reported in the 2002 Chinese National Nutrition and Health Survey from women living in rural areas except for low intakes of protein, fat, iron and zinc. Of the participants, 54% were at risk of inadequate intake of energy. There were high proportions of pregnant women who did not have adequate intakes of folate (97%) and zinc (91%). Using the "probability approach", 64% of subjects had an inadequate consumption of iron.</p> <p>Conclusion</p> <p>These results reveal that the majority of pregnant women in these two counties had low intakes of nutrients that are essential for pregnancy such as iron and folate.</p> <p>Trial registration</p> <p>ISRCTN08850194.</p

    Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile

    Get PDF
    Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity
    corecore