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Abstract

Pythagorean fuzzy set (PFS), as an extension of intuitionistic fuzzy set (IFS) to deal
with uncertainty, has attracted much attention since its introduction, in both theory and
application aspects. In this paper, we investigate the multiple attribute decision mak-
ing (MADM) problems with the Pythagorean linguistic information based on some
new aggregation operators. To begin with, we present some new Pythagorean fuzzy
linguistic Muirhead mean operators to deal with MADM problems with Pythagore-
an fuzzy linguistic information, including the Pythagorean fuzzy linguistic Muirhead
Mean (PFLMM) operator, the Pythagorean fuzzy linguistic weighted Muirhead Mean
(PFLWMM) operator, the Pythagorean fuzzy linguistic dual Muirhead Mean (PFLD-
MM) operator and the Pythagorean fuzzy linguistic dual weighted Muirhead Mean
(PFLDWMM) operator, the main advantages of these aggregation operators are that
they can capture interrelationships of multiple attributes among any number of at-
tributes by a parameter vector P and make information aggregation process more flex-
ible by the parameter vector P. In addition, the some properties of these new aggre-
gation operators are proved and some special cases are discussed where the parameter
vector takes some different values. Moreover, we present two new methods to solve
the MADM problems with Pythagorean fuzzy linguistic information. Finally, an illus-
trative example is provided to show the feasibility and validity of the new methods,
investigate the influences of parameter vector P on the decision making results and al-
so analyze the advantages of proposed methods by comparing with the other existing
methods.
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1. INTRODUCTION

Multiple attribute decision making (MADM), as an effective framework for com-
parison, has always been used to find the most desirable one from a finite set of alter-
natives on the predefined attributes. An important problem of decision process is to
express the attribute value. However, due to the intrinsic complexity of natural objects,5

there exists much uncertain information in many real-world problems. So, it is difficult
for experts or decision makers (DMs) to give their assessments on attributes by crisp
numbers. Intuitionistic fuzzy set (IFS) [1], is an effective tool to express the complex
fuzzy information due to it is characterized by three parameters, namely, a member-
ship degree, a nonmembership degree and an indeterminacy degree. That is, an IFS A10

in a finite universe of discourse X has such a structure A = {⟨x, (µA(x), νA(x))⟩|x ∈ X},
where µA represents the membership degree and νA is the nonmembership degree with
the condition that 0 ≤ µA(x) + νA(x) ≤ 1. Since IFS’s appearance, it becomes a pow-
erful tool to deal with some information with imprecision, uncertainty and vagueness.
However, Yager [43, 44] pointed out that there exists such a kind of useful extension of15

IFS A = {⟨x, (µA(x), νA(x))⟩|x ∈ X} which satisfies the condition 0 ≤ µ2
A(x) + ν2A(x) ≤ 1.

Such a useful extension of IFSs is called Pythagorean fuzzy set (PFS). The main dif-
ference between the IFSs and PFSs focuses on the membership degrees and the non-
membership degrees of them. Therefore, it follows from the above analysis of IFSs and
PFSs that PFS has more powerful ability than IFS to deal with uncertain information in20

MADM problems. Since PFS was proposed, a lot of research achievements about the-
ory and methods have been made, and it has three aspects: (A) the basic theory, such as
the operational laws [30, 31], comparison method [28], distance [13, 21], similarity de-
gree [49], correlation measure [5], information measure [33], and other properites [9];
(B) the extended traditional MADM or MAGDM methods for PFS, such as Stochastic25

MCDM method [27], MABAC method [29], TODIM method [37, 40], Mathematical
programming method [38], QUALIFLEX [48], TOPSIS method [50] and so on; (C) the
MADM or MAGDM methods [4, 6, 7, 8, 14, 15, 23, 36, 41, 45] based on Pythagorean
fuzzy aggregation operators.

In the field of information fusion, information aggregation is an important research30

topic as it is a critical process of gathering relevant information from multiple sources.
However, aggregation operator as a tool to aggregate relevant information has been
focused and also used in many decision making problems. The main advantage of de-
cision methods based on aggregation operator is that these methods can not only give
the ranking information but also provide the comprehensive values of the alternatives.35

Due to the increasing complexity of the real worlds, numerical numbers may not always
be adequate to solve the uncertain and fuzzy information in practical decision making
problems, especially for qualitative aspects, while it is easy to provide the assessment
values taking the form of linguistic variables. Therefore, some linguistic decision mak-
ing methods are developed [10, 11, 24, 25, 42]. Based on the idea of intuitionistic fuzzy40

set, Wang [39] proposed the intuitionistic linguistic set (ILS), which uses an intuition-
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istic fuzzy number (IFN) to describe the membership and non-membership degree of
a linguistic variable simultaneously. Zhang [46] proposed MAGDM method based on
linguistic intuitionistic fuzzy numbers. Many corresponding decision making methods
were proposed based on some intuitionistic fuzzy linguistic aggregation operator, such45

as, Chen [3] proposed a MADM methods based on linguistic inituitionistic fuzzy num-
bers, Jun [12] proposed MADM method based on intuitionistic linguistic Maclaurin
symmetric mean aggregation (ILMSM) operators, Liu [16, 17, 19, 20] proposed in-
tuitionistic linguistic geometric aggregation (ILGA)operators, intuitionistic linguistic
weighted Bonferroni mean (ILWBM) operator, improved intuitionistic linguistic fuzzy50

aggregation operator and applied to MADM or MAGDM problems, Zhang [47] pro-
posed extended outranking approach under linguistic intuitionistic fuzzy environment.
It is obvious that the ILS is an efficient approximate technique to deal with the uncer-
tain and fuzzy information by integrating the advantages of IFS and linguistic variables.
Motivated by the idea of linguistic variables and PFSs, Peng [32] proposed Pythagorean55

fuzzy linguistic term (PFLT) and applied to MADM problems. Some novel linguistic
decision making methods based on Pythagorean fuzzy set have been developed, such
as, Liu [18] proposed MCDM decision making based on Pythagorean fuzzy uncertain
linguistic aggregation operators, Du [4] proposed novel MADM method with interval-
value Pythagorean fuzzy linguistic information. In addition, some decision methods60

based on 2-tuple linguistic [2, 35] and 2-dimension linguistic aggregation operator [22]
are also developed.

Muirhead mean (MM) [26] is a well-known aggregation operator for it can consider
the interrelationships among any number of aggregation arguments and it also a uni-
versal operator since it contain other general operators by assessing different parameter65

vectors. when the parameter vector is assess different values, MM reduced to some ex-
isting operators, such as arithmetic and geometric operators which do not consider the
interrelationships of aggregation arguments, Maclaurin symmetric mean [34, 41], are
the special cases of MM operator. So, some extended MM operators [18, 35] have been
developed and applied to solve the MAGDM problems. Because PFNs have stronger70

abilities than IFSs in describing the information, linguistic variables are more suitable
to describe practical problems that are ill-defined by using quantitative information and
the MM can capture interrelationships among multi-input arguments assigned by a vari-
able vector. Therefore, it is necessary and significant to develop some new linguistic
aggregation operators based on MM that not only accommodate Pythagorean linguistic75

information but also can capture the interrelationships among multi-input arguments.
The goal of this paper is to develop some methods for MADM problems with

Pythagorean fuzzy linguistic information based on some new Pythagorean fuzzy lin-
guistic MM (PFLMM) operators by combining MM and Pythagorean fuzzy linguis-
tic information. To begin with, some new Pythagorean fuzzy linguistic Muirhead80

mean operators to deal with MADM problems with Pythagorean fuzzy linguistic in-
formation, included the Pythagorean fuzzy linguistic Muirhead Mean (PFLMM) op-
erator, the Pythagorean fuzzy linguistic weighted Muirhead Mean (PFLWMM) oper-
ator, the Pythagorean fuzzy linguistic dual Muirhead Mean (PFLDMM) operator, the
Pythagorean fuzzy linguistic dual weighted Muirhead Mean (PFLDWMM) operator,85

are presented. In addition, some properties of these new aggregation operators are
proved and some special cases are discussed. Finally, two new methods are presented
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to solve an MADM problem with Pythagorean fuzzy linguistic information. To do so,
the rest of the paper is organized as follows. In Section 2, we review some defini-
tions on PFSs, PFLNs and Muirhead mean, which are used in the analysis throughout90

this paper. Section 3 is devoted to the main results concerning PFLMM operator and
PFLWMM operator along with their properties. Section 4 is focused on PFLDMM op-
erator and PLDWMM operator along with their properties. In Section 5, we construct
MADM approaches based on PFLWMM operator and PFLDWMM operator proposed
in Section 3 and Section 4. Consequently, a practical example is provided in Section 695

to verify the validity of the proposed methods and to show their advantages. In Section
7, we give some conclusions of this study.

2. PRELIMINARIES

In this section, some basic concepts related to PFS, Pythagorean fuzzy linguistic100

set and Muirhead mean are recapped, which are the basis of this work.

2.1. Pythagorean fuzzy set
Let X = {x1, x2, · · · , xn} be a finite universe of discourse, an intuitionistic fuzzy set

(IFS) [1] A in X characterized by a membership function µA : X → [0, 1] and a non-
membership function νA : X → [0, 1], which satisfy the condition 0 ≤ µA(x) + νA(x) ≤
1. An IFS A can be expressed as

A = {⟨x, (µA(x), νA(x))⟩|x ∈ X}.

πA(x) = 1−µA(x)−νA(x) is called the degree of indeterminacy. For convenience, called
(µA(x), νA(x)) is an intuitionistic fuzzy number (IFN) and denoted by (µA, νA).105

However, there are some decision-making problems in which the DMs or the ex-
perts’ attitudes are possibly not suitable to be described by applying an IFS. Under
such situations, Pythagorean fuzzy set (PFS), introduced by Yager[44], which is a nov-
el concept to deal with this situation and also an extension of IFS:

In a finite universe of discourse X = {x1, x2, · · · , xn}, a PFS P with the structure

P = {⟨x, (µP(x), νP(x))⟩|x ∈ X}.

where µP : X → [0, 1] denotes the membership degree and νP : X → [0, 1] de-110

notes the nonmembership degree of the element x ∈ X to the set P, respectively, with
the condition that 0 ≤ (µP(x))2 + (νP(x))2 ≤ 1. πP(x) =

√
1 − (µP(x))2 − (νP(x))2 is

called the degree of indeterminacy. For the convenience, Zhang and Xu[50] called
p = (µp(x), νp(x)) a Pythagorean fuzzy number (PFN) denoted by p = (µp, νp).

115

2.2. The Pythagorean Fuzzy Linguistic Set
Let S = {s0, s1, · · · , sg} be a finite linguistic term set with odd cardinality, where

si represents a possible value for linguistic term, g + 1 is the cardinality of S . For
example, S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = fair, s4 =

good, s5 = very good, s6 = extremely good}. Obviously, the mid linguistic term120

represents an assessment of ”indifference”, and the rest of other linguistic labels are
placed by symmetrically around it.
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Let si and s j be any two linguistic numbers in linguistic set S , they must satisfy the
following properties[10, 11]:

(1) If i > j, then si ≻ s j ;125

(2) There exists negative operator: Neg(si) = s j, such that j = gCi;
(3) If si ≻ s j, max(si, s j) = si and min(si, s j) = s j.
To preserve all the given information, the discrete linguistic term set S can be

extended to a continuous linguistic term setS̄ = {sα|α ∈ [0, g]}. If sα ∈ S , then we call
sα the original linguistic term; sα < S , we call sα the virtual linguistic term. In general,130

the decision makers use the original linguistic terms to evaluate alternatives, and the
virtual linguistic terms can only appear in calculation[42].

Now, we recall some definitions of Pythagorean fuzzy linguistic term set.
Let X = {x1, x2, · · · , xn} be a finite nonempty universe of discourse and S̄ be a

continuous linguistic term set of s = {s0, s1, · · · , sg}, a Pythagorean fuzzy linguistic set
(PFLS) P on X with the structure

P = {⟨x, sϑ(x), (µP(x), νP(x))⟩|x ∈ X}.

where sϑ(x) ∈ S̄ , µP : X → [0, 1] denotes the membership degree and νP : X →
[0, 1] denotes the nonmembership degree of the element x ∈ X to the linguistic ter-135

m sϑ(x), respectively, with the condition that 0 ≤ (µP(x))2 + (νP(x))2 ≤ 1. πP(x) =√
1 − (µP(x))2 − (νP(x))2 is called the degree of indeterminacy to linguistic term sϑ(x).

For the convenience, we note a Pythagorean fuzzy linguistic number (PFLN) as a =
⟨sϑ(a), (µ(a), ν(a))⟩.

Obviously, if 0 ≤ µP(x)) + (νP(x) ≤ 1, a PFLN is reduced to an intuitionistic fuzzy140

linguistic number (IFLN).
Let a1 = ⟨sϑ1 , (µ1, ν1)⟩ and a2 = ⟨sϑ2 , (µ2, ν2)⟩ be any two PFLNs and λ ≥ 0, the

(1)a1 ⊕ a2 = ⟨sϑ1+ϑ2 , (
√
µ2

1 + µ
2
2 − µ2

1µ
2
2, ν1ν2);

(2)a1 ⊗ a2 = ⟨sϑ1×ϑ2 , (µ1µ2,
√
ν21 + ν

2
2 − ν21ν22);

(3)λa1 = ⟨sλ×ϑ1 , (
√

1 − (1 − µ2
1)λ, νλ1);

(4)aλ1 = ⟨sϑλ1 , (µ
λ
1,
√

1 − (1 − ν21)λ).

Let a = ⟨sϑ(a), (µ(a), ν(a))⟩ be a PFLN, the score of a can be evaluated by a new
score function S (a), which is shown as

S (a) =
1
2

(µ(a)2 + 1 − ν(a)2) × sϑ(a). (1)

The larger the score value of S (a), the greater the PFLN a.145

Let a = ⟨sϑ(a), (µ(a), ν(a))⟩ be a PFLN, the degree of accuracy of a can be evaluated
by a new accuracy function H(a), which is shown as

H(a) =
1
2

(µ(a)2 + ν(a)2) × sϑ(a). (2)

The larger the degree of accuracy of S (a), the greater the PFLN a.
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Based on the score function S and accuracy function H, the comparison rules be-
tween two PFLNs are given as follows:150

Let a1 = ⟨sϑ1 , (µ1, ν1)⟩ and a2 = ⟨sϑ2 , (µ2, ν2)⟩ be any two PFLNs, then
(1) If S (a1) ≤ S (a2), then a1 ≺ a2;
(2) If S (a1) = S (a2), then

(2.1) If H(a1) ≤ H(a2), then a1 ≺ a2;
(2.2) If H(a1) = H(a2), then a1 = a2.155

2.3. Muirhead Mean Operator
The Muirhead mean (MM) operator [26] is a general aggregation function and first-

ly proposed by Muirhead in 1902, it is defined as follows:
DEFINITION 1. Let ai(i = 1, 2, · · · , n) be a collection of nonnegative real num-160

bers, A = {a1, a2, · · · , an} and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector, if

MMP(a1, · · · , an) = (
1
n!

(
∑
θ∈S n

(
n∏

j=1

ap j

θ( j))))
1∑n

j=1 p j , (3)

The we call MMP the Muirhead mean (MM), where θ( j)( j = 1, 2, · · · , n) is any a
permutation of (1, 2, · · · , n) and S n is the collection of all permutation of θ( j)( j =
1, 2, · · · , n). There are some special cases when the parameter vector assessed different
values.165

(1) If P = (1, 0, · · · , 0), MM operator will reduces to arithmetic averaging operator

MM(1,0,··· ,0)(a1, · · · , an) =
1
n

n∑
j=1

a j. (4)

(2) If P = (

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0), PFLMM operator will reduces to Maclaurin sym-

metric mean (MSM) operator

PFLMM(

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0)(a1, · · · , an) = (

∑
1≤i1≤···≤ik≤n

∏k
j=1 a j

Ck
n

)
1
k ; (5)

(3) If P = ( 1
n ,

1
n , · · · ,

1
n ), MM operator will reduces to geometric averaging operator

MM( 1
n ,

1
n ,··· ,

1
n )(a1, · · · , an) =

n∏
j=1

a
1
n
j . (6)

From the above discussion we can see that the advantage of the MM operator is170

that it can capture the interrelationships among the multiple aggregated arguments and
it is a generalization of most existing aggregation operators.

3. PYTHAGOREAN FUZZY LINGUISTIC WEIGHTED MUIRHEAD MEAN
OPERATORS175

Because the traditional MM can only process the crisp number, and PFLNs can
easily express the fuzzy information, it is necessary and significant to extend MM to
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process PFLNs. In this section, we propose the Pythagorean fuzzy linguistic Muir-
head mean (PFLMM) operator and the Pythagorean fuzzy linguistic weighted Muir-
head mean (PFLWMM) operator, and discuss the properties of these operators.180

3.1. Pythagorean Fuzzy Linguistic Muirhead Mean Operators
DEFINITION 2. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,

A = {a1, a2, · · · , an} and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. Then a
Pythagorean fuzzy linguistic Muirhead mean operator is a function PFLMMP:An → A,185

and

PFLMMP(a1, · · · , an) = (
1
n!

(⊕θ∈S n (⊗n
j=1ap j

θ( j))))
1∑n

j=1 p j , (7)

where θ( j)( j = 1, 2, · · · , n) is any a permutation of (1, 2, · · · , n) and S n is the collection
of all permutation of θ( j)( j = 1, 2, · · · , n).

THEOREM 1. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs and
P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. Then PFLMMP(a1, · · · , an) is still a190

PFLN and

PFLMMP(a1, · · · , an) = ⟨s
( 1

n! (
∑
θ∈S n (

∏n
j=1 ϑ

p j
θ( j))))

1∑n
j=1 p j
,

((

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ,

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j )⟩. (8)

Proof. Firstly, we prove Eq. (8). According to the operational law of PFLNs, we obtain

(aθ( j))p j = ⟨s
ϑ

p j
θ( j)
, (µp j

θ( j),
√

1 − (1 − ν2θ( j))
p j )⟩, and

⊗n
j=1aθ( j)p j = ⟨s∏n

j=1 ϑ
p j
θ( j)
, (

n∏
j=1

µ
p j

θ( j),

√√
1 −

n∏
j=1

(1 − ν2θ( j))
p j )⟩,

then we get

⊕θ∈S n ⊗n
j=1 aθ( j)p j = ⟨s∑

θ∈S n
∏n

j=1 ϑ
p j
θ( j)
,

(

√√
1 −
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2),
∏
θ∈S n

√√
1 −

n∏
j=1

(1 − ν2θ( j))
p j )⟩,

and

1
n!
⊕θ∈S n ⊗n

j=1aθ( j)p j = ⟨s 1
n!
∑
θ∈S n
∏n

j=1 ϑ
p j
θ( j)
,

(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! , (
∏
θ∈S n

√√
1 −

n∏
j=1

(1 − ν2θ( j))
p j )

1
n! )⟩.
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Therefore,195

(
1
n!
⊕θ∈S n ⊗n

j=1aθ( j)p j )
1∑n

j=1 p j = ⟨s
( 1

n!
∑
θ∈S n
∏n

j=1 ϑ
p j
θ( j))

1∑n
j=1 p j
,

((

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ,

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j )⟩.

In addition, we need to prove PFLMMP(a1, · · · , an) is also a PFLN.
Since µθ( j) ∈ [0, 1], we have µp j

θ( j) ∈ [0, 1] and (
∏n

j=1 µ
p j

θ( j))
2 ∈ [0, 1]. And then

1 − (
n∏

j=1

µ
p j
aθ( j) )

2 ∈ [0, 1] and
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2)

1
n! ∈ [0, 1]

And so, √√
(1 −
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ∈ [0, 1]

Similarly, √√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j ∈ [0, 1]

Let200

µ =

√√
(1 − (

∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ,

ν =

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j ;

that is, µ, ν ∈ [0, 1].
Now we need to prove µ2 + ν2 ∈ [0, 1].

8



Since µ2
θ( j) + ν

2
θ( j) ≤ 1, then µ2

θ( j) ≤ 1 − ν2θ( j). Furthermore, we have

µ2 + ν2 = (1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j

+1 − (1 − (
∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j

≤ (1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(1 − ν2θ( j))
p j )))

1
n! )

1∑n
j=1 p j

+1 − (1 − (
∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j = 1.

That is, µ2+ν2 ∈ [0, 1]. Obviously, s
( 1

n! (
∑
θ∈S n (

∏n
j=1 ϑ

p j
θ( j))))

1∑n
j=1 p j
∈ S . Hence, PFLMMP(a1, · · · , an)

is also a PFLN.205

EXAMPLE 1. Let a1 = ⟨s2, (0.5, 0.3)⟩, a2 = ⟨s4, (0.7, 0.5)⟩, a3 = ⟨s3, (0.8, 0.2)⟩
and P = (1, 0.5, 0.4). Let

s
( 1

3! (
∑
θ∈S 3

(
∏3

j=1 ϑ
p j
θ( j))))

1∑3
j=1 p j

= sb

where

b = (
1
6
× (2 × 40.5 × 30.4 + 2 × 30.5 × 40.4 + 4 × 20.5 × 30.4

+4 × 30.5 × 20.4 + 3 × 40.5 × 20.4 + 3 × 20.5 × 40.4))
1

1+0.5+0.4

= 2.9033.

Therefore,

s
( 1

3! (
∑
θ∈S 3

(
∏3

j=1 ϑ
p j
θ( j))))

1∑3
j=1 p j

= s2.9033.

Since210

(

√√√
1 − (
∏
θ∈S 3

(1 − (
3∏

j=1

µ
p j

θ( j))
2))

1
3! )

1∑3
j=1 p j = ((1 − ((1 − (0.5 × 0.70.5 × 0.80.4)2)

×(1 − (0.5 × 0.80.5 × 0.70.4)2) × (1 − (0.7 × 0.50.5 × 0.80.4)2)
×(1 − (0.7 × 0.80.5 × 0.50.4)2) × (1 − (0.8 × 0.50.5 × 0.70.4)2)

×(1 − (0.8 × 0.70.5 × 0.50.4)2))
1
6 )

1
2 )

1
1+0.5+0.4 = 0.6592
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and √√√
1 − (1 − (

∏
θ∈S 3

(1 − (
3∏

j=1

(1 − ν2θ( j))
p j ))

1
3! )

1∑3
j=1 p j = (1 − (1 − ((1 − (1 − 0.32)

×(1 − 0.52)0.5 × (1 − 0.22)0.4) × (1 − (1 − 0.32) × (1 − 0.22)0.5 × (1 − 0.52)0.4)
×(1 − (1 − 0.52) × (1 − 0.32)0.5 × (1 − 0.22)0.4) × (1 − (1 − 0.52) × (1 − 0.22)0.5

×(1 − 0.32)0.4) × (1 − (1 − 0.22) × (1 − 0.32)0.5 × (1 − 0.52)0.4) × (1 − (1 − 0.22)

×(1 − 0.52)0.5 × (1 − 0.32)0.4))
1
3! )

1
1+0.5+0.4 )

1
2 = 0.3581.

So, PFLMMP(a1, a2, a3) = ⟨s2.9033, (0.6592, 0.3581)⟩.
In the process of decision making, the aggregation results would be more reliable

if the selected operator is monotonic, the lack of monotonicity may debase the relia-
bility and dependability of the final decision-making results. However, we can prove215

PFLMMP(a1, · · · , an) are idempotent, bounded, and monotonic.
PROPERTY 1 (IDEMPOTENCY). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a

collection of PLFNs, P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector and all ai(i =
1, 2, · · · , n) are equal, i.e., ai = a = ⟨sϑ, (µ, ν)⟩(i = 1, 2, · · · , n), then

PFLMMP(a1, · · · , an) = a.

Proof. Since220

PFLMMP(a1, · · · , an) = ⟨s
( 1

n! (
∑
θ∈S n (

∏n
j=1 ϑ

p j
θ( j))))

1∑n
j=1 p j
,

((

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ,

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j )⟩.

and ϑi = ϑ, µi = µ, νi = ν, we have

(
1
n!

(
∑
θ∈S n

(
n∏

j=1

ϑ
p j

θ( j))))
1∑n

j=1 p j = (
1
n!

(
∑
θ∈S n

(
n∏

j=1

ϑp j )))
1∑n

j=1 p j = (
1
n!

(
∑
θ∈S n

(ϑ
∑n

j=1 p j )
1∑n

j=1 p j

= (
1
n!
· n! · (ϑ

∑n
j=1 p j ))

1∑n
j=1 p j = ϑ.
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(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j = (

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µp j )2))
1
n! )

1∑n
j=1 p j

= (
√

1 − (
∏
θ∈S n

(1 − µ2
∑n

j=1 p j ))
1
n! )

1∑n
j=1 p j

= (
√

1 − (((1 − µ2
∑n

j=1 p j )n!)
1
n! ))

1∑n
j=1 p j

= (
√

1 − (1 − µ2
∑n

j=1 p j ))
1∑n

j=1 p j

= (
√
µ2
∑n

j=1 p j )
1∑n

j=1 p j = µ.√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j =

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − v2)p j ))
1
n! )

1∑n
j=1 p j

=

√
1 − (1 − (

∏
θ∈S n

(1 − (1 − v2)
∑n

j=1 p j ))
1
n! )

1∑n
j=1 p j

=

√
1 − (1 − ((1 − (1 − v2)

∑n
j=1 p j )n!)

1
n! )

1∑n
j=1 p j

=

√
1 − (1 − (1 − (1 − v2)

∑n
j=1 p j ))

1∑n
j=1 p j

=

√
1 − ((1 − v2)

∑n
j=1 p j )

1∑n
j=1 p j

=
√

1 − (1 − v2) = v.

therefore PFLMMP(a1, · · · , an) = ⟨sϑ, (µ, ν)⟩ = a.
PROPERTY 2 (MONOTONICITY). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) and

a
′

i = ⟨sϑ′i , (µ
′

i , ν
′

i)⟩(i = 1, 2, · · · , n) be two collections of PLFNs, P = (p1, p2, · · · , pn) ∈225

Rn be a parameter vector. If sϑi ≤ sϑ′i , µi ≤ µ
′

i and νi ≥ ν
′

i , then

PFLMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′

n).

Proof. Let PFLMMP(a1, · · · , an) = ⟨sϑ, (µ, ν)⟩, PFLMMP(a
′

1, · · · , a
′
n) = ⟨sϑ′ , (µ

′
, ν
′
)⟩.

Since sϑ = s
( 1

n! (
∑
θ∈S n (

∏n
j=1 ϑ

p j
θ( j))))

1∑n
j=1 p j

and sϑ j ≤ sϑ′j , we have

sϑ j ≤ sϑ′j ⇒ s
ϑ

p j
j
≤ s(ϑ′j)

p j ⇒ s∏n
j=1(ϑ

p j
j

) ≤ s∏n
j=1((ϑ′j)

p j )

⇒ s∑n
j=1(
∏n

j=1(ϑ
p j
j

)) ≤ s∑n
j=1(
∏n

j=1((ϑ′j)
p j ))

⇒ s 1
n! (
∑n

j=1(
∏n

j=1(ϑ
p j
j ))) ≤ s 1

n! (
∑n

j=1(
∏n

j=1((ϑ′j)
p j )))

⇒ s
( 1

n! (
∑n

j=1(
∏n

j=1(ϑ
p j
j ))))

1∑n
j=1 p j
≤ s

( 1
n! (
∑n

j=1(
∏n

j=1((ϑ′j)
p j ))))

1∑n
j=1 p j
.

That is, sϑ ≤ sϑ′ .
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Since µi ≤ µ
′

i , then we have µp j

θ( j) ≤ (µ
′

θ( j))
p j and (

∏n
j=1(µp j

θ( j)))
2 ≤ (

∏n
j=1(µ

′

θ( j))
p j )2.230

Furthermore, 1− (
∏n

j=1(µ
′

θ( j))
p j )2 ≤ 1− (

∏n
j=1(µp j

θ( j)))
2 and

∏
θ∈S n

(1− (
∏n

j=1(µ
′

θ( j))
p j )2) ≤∏

θ∈S n
(1−(
∏n

j=1(µp j

θ( j)))
2), and so (

∏
θ∈S n

(1−(
∏n

j=1(µ
′

θ( j))
p j ))2)

1
n! ≤ (

∏
θ∈S n

(1−(
∏n

j=1(µp j

θ( j)))
2))

1
n! .

So we have

(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

µ
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ≤ (

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(µ′θ( j))
p j )2))

1
n! )

1∑n
j=1 p j ,

that is, µ ≤ µ′ . Similarly, we also get ν ≥ ν′ .
In order to prove the ⟨sϑ, (µ, ν)⟩ ≤ ⟨sϑ′ , (µ

′
, ν
′
)⟩. There are the following cases need235

to be discussed.
(A.) If µ < µ

′
and ν ≥ ν′ , then µ2 + 1 − ν2 < (µ

′
)2 + 1 − (ν

′
)2. Furthermore,

1
2 (µ2 + 1− ν2)× sϑ < 1

2 ((µ
′
)2 + 1− (ν

′
)2)× sϑ′ . That is, S (⟨sϑ, (µ, ν)⟩) ≤ S (⟨sϑ′ , (µ

′
, ν
′
)⟩.

That is, PFLMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′
n).

(B.) If µ = µ
′

and ν > ν
′
, then µ2 + 1 − ν2 < (µ

′
)2 + 1 − (ν

′
)2. Furthermore,240

1
2 (µ2 + 1− ν2)× sϑ < 1

2 ((µ
′
)2 + 1− (ν

′
)2)× sϑ′ . That is, S (⟨sϑ, (µ, ν)⟩) ≤ S (⟨sϑ′ , (µ

′
, ν
′
)⟩.

That is, PFLMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′
n).

(C.) If µ = µ
′

and ν = ν
′
, then µ2 + 1 − ν2 = (µ

′
)2 + 1 − (ν

′
)2. Furthermore,

µ2+1−ν2
2 =

(µ
′
)2+1−(ν

′
)2

2 .
(C1.) If sϑ < sϑ′ , then 1

2 (µ2 + 1 − ν2) × sϑ < 1
2 ((µ

′
)2 + 1 − (ν

′
)2) × sϑ′ . That is,245

S (⟨sϑ, (µ, ν)⟩) ≤ S (⟨sϑ′ , (µ
′
, ν
′
)⟩. That is,

PFLMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′

n).

(C2.) If sϑ = sϑ′ , then 1
2 (µ2 + 1 − ν2) × sϑ = 1

2 ((µ
′
)2 + 1 − (ν

′
)2) × sϑ′ . That

is, S (⟨sϑ, (µ, ν)⟩) = S (⟨sϑ′ , (µ
′
, ν
′
)⟩. Furthermore, H(⟨sϑ, (µ, ν)⟩) = 1

2 (µ2 + ν2) × sϑ =
1
2 ((µ

′
)2 + (ν

′
)2) × sϑ′ = H(⟨sϑ′ , (µ

′
, ν
′
)⟩, therefore That is,

PFLMMP(a1, · · · , an) = PFLMMP(a
′

1, · · · , a
′

n).

From above discussion, we have PFLMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′
n).250

From the idempotency and monotonicity of PFLMM operator, it is easy to obtain
that PFLMM operator is bounded, that is,

PROPERTY 3 (BOUNDEDNESS). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a
collection of PLFNs, P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector,

a− = ⟨min1≤i≤n{sϑi },min1≤i≤n{µi},max1≤i≤n{νi}⟩,
a+ = ⟨max1≤i≤n{sϑi },max1≤i≤n{µi},min1≤i≤n{νi}⟩,

then255

a− ≤ PFLMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′

n) ≤ a+.

Now, we will develop some special cases of PFLMM operator with respect to the
parameter vector. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs and
P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector.
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(1) If P = (1, 0, · · · , 0), PFLMM operator will reduces to Pythagorean fuzzy lin-
guistic arithmetic averaging (PFLAA) operator260

PFLMM(1,0,··· ,0)(a1, · · · , an) = ⟨s∑n
j=1 ϑi

n

, (

√√
1 −

n∏
j=1

(1 − µ2
j )

1
n ,

n∏
j=1

ν
1
n
j ⟩. (9)

(2) If P = (λ, 0, · · · , 0), PFLMM operator will reduces to generalized Pythagorean
fuzzy linguistic arithmetic averaging (GPFLAA) operator

PFLMM(1,0,··· ,0)(a1, · · · , an) = ⟨s
(
∑n

j=1 ϑ
λ
i

n )
1
λ

, (

√√
1 −

n∏
j=1

(1 − µ2λ
j )

1
n )

1
λ ,

√√
1 − (1 −

n∏
j=1

(1 − (1 − ν2j )λ)
1
n )

1
λ ⟩. (10)

(3) If P = (
k

1, 1, · · · , 1︸      ︷︷      ︸, n−k
0, · · · , 0︸   ︷︷   ︸), PFLMM operator will reduces to Pythagorean

fuzzy linguistic Maclaurin symmetric mean (PFLMSM) operator

PFLMM(

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0)(a1, · · · , an) = ⟨s

( 1
Ck

n
(
∑

1≤i1≤···≤ik≤1(
∏k

j=1 ϑi j )))
1
k
,

(

√√√
(1 −

∏
1≤i1···≤ik≤n

(1 −
k∏

j=1

µ2
i j

)
1

Ck
n )

1
k ,

√√√
1 − (1 − (

∏
1≤i1≤···≤ik≤n

(1 −
k∏

j=1

(1 − ν2i j
))

1
Ck

n ))
1
k )⟩.

(11)

(4) If P = (1, 1, · · · , 1), PFLMM operator will reduces to Pythagorean fuzzy lin-265

guistic geometric averaging (PFLGA) operator

PFLMM(1,1,··· ,1)(a1, · · · , an) = ⟨s∏n
j=1 ϑ

1
n
j

, ((
n∏

j=1

µ j)
1
n ,

√√
1 − (

n∏
j=1

(1 − ν2j ))
1
n )⟩. (12)

(5) If P = ( 1
n ,

1
n , · · · ,

1
n ), PFLMM operator will reduces to Pythagorean fuzzy lin-

guistic geometric averaging (PFLGA) operator

PFLMM( 1
n ,

1
n ,··· ,

1
n )(a1, · · · , an) = ⟨s∏n

j=1 ϑ
1
n
j

, ((
n∏

j=1

µ j)
1
n ,

√√
1 − (

n∏
j=1

(1 − ν2j ))
1
n )⟩. (13)

3.2. Pythagorean Fuzzy Linguistic Weighted Muirhead Mean Operators
Weights of attributes play a vital role in decision making and will directly the results270

of decision making results. In the Section 3.1, we proposed the PFLMM aggregation
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operators which can not consider the weights of attributes, so it is very important to
consider to weights of attributes in the process of information aggregation.

DEFINITION 3. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,
A = {a1, a2, · · · , an}, w = (w1,w2, · · · ,wn)T be the weight vector of ai(i = 1, 2, · · · , n)275

with wi ∈ [0, 1] and
∑n

i=1 wi = 1, and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector.
Then a Pythagorean fuzzy linguistic weighted Muirhead mean operator is a function
PFLWMMP: An → A, and

PFLWMMP(a1, · · · , an) = (
1
n!

(⊕θ∈S n (⊗n
j=1(wθ( j)aθ( j))p j )))

1∑n
j=1 p j , (14)

where θ( j)( j = 1, 2, · · · , n) is any a permutation of (1, 2, · · · , n) and S n is the collection
of all permutation of θ( j)( j = 1, 2, · · · , n).280

THEOREM 2. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,
w = (w1,w2, · · · ,wn)T be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and∑n

i=1 wi = 1, and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. Then PFLWMMP(a1, · · · , an)
is still a PFLN and

PFLWMMP(a1, · · · , an) = ⟨s
( 1

n! (
∑
θ∈S n (

∏n
j=1(wθ( j)ϑθ( j))

p j )))
1∑n

j=1 p j
,

((

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(1 − (1 − µ2
θ( j))

wθ( j) )p j )))
1
n! )

1∑n
j=1 p j ,

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − (ν2θ( j))
wθ( j) )p j ))

1
n! )

1∑n
j=1 p j )⟩. (15)

Proof. Since aθ( j) is a PFLN, we have wθ( j)aθ( j) is also a PFLN. By the operation285

of PFLNs, we have wθ( j)aθ( j) = (
√

1 − (1 − µ2
θ( j))

wθ( j) , ν
wθ( j)

θ( j) ). Therefore, we can directly
obtain the result according to Theorem 1.

EXAMPLE 2. Let a1 = ⟨s2, (0.3, 0.5)⟩, a2 = ⟨s4, (0.2, 0.4)⟩, a3 = ⟨s3, (0.6, 0.2)⟩,
w = (0.25, 0.4, 0.35) and P = (1, 1, 0). According to Eq. (6), since

(
1
3!

(
∑
θ∈S 3

(
3∏

j=1

(wθ( j)ϑθ( j)))))
1∑3

j=1 p j = (
1
6
× ((2 × 0.25) × (4 × 0.4) + (2 × 0.25)

×(3 × 0.35) + (4 × 0.4) × (2 × 0.25) + (4 × 0.3) × (3 × 0.35) + (3 × 0.35)

×(4 × 0.4) + (3 × 0.35) × (2 × 0.25)))
1

1+1+0 = 1.0008.

14



and290

(

√√√
1 − (
∏
θ∈S 3

(1 − (
3∏

j=1

(1 − (1 − µ2
θ( j))

wθ( j) ))))
1
3! )

1
1+1 = ((1 − ((1 − ((1 − 0.32)0.25

×(1 − 0.22)0.4)) × (1 − ((1 − 0.32)0.25 × (1 − 0.62)0.35)) × (1 − ((1 − 0.22)0.4

×(1 − 0.22)0.25)) × (1 − ((1 − 0.22)0.4 × (1 − 0.62)0.35)) × (1 − ((1 − 0.62)0.35

×(1 − 0.32)0.25)) × (1 − ((1 − 0.62)0.35 × (1 − 0.22)0.4)))
1
6 )

1
2 )

1
1+1+0 = 0.1973;√√√

1 − (1 − (
∏
θ∈S 3

(1 − (
3∏

j=1

(1 − ν2θ( j))
p j ))

1
3! )

1∑3
j=1 p j = (1 − (1 − ((1 − (1 − 0.50.5)

×(1 − 0.40.8)) × (1 − (1 − 0.50.5) × (1 − 0.20.7)) × (1 − (1 − 0.40.8) × (1 − 0.50.5))
×(1 − (1 − 0.40.8) × (1 − 0.20.7)) × (1 − (1 − 0.20.7) × (1 − 0.50.5) × (1 − (1 − 0.20.7)

×(1 − 0.40.8))))
1
3! )

1
1+1+0 )

1
2 = 0.7151.

Therefore, PFLMMP(a1, a2, a3) = ⟨s1.0008, (0.1973, 0.7151)⟩.
In the process of decision making, the aggregation results would be more reliable

if the selected operator is monotonic, the lack of monotonicity may debase the relia-
bility and dependability of the final decision-making results. Similar to Property 2 and
Property 3, we can prove PFLWMMP(a1, · · · , an) are bounded, and monotonic.295

PROPERTY 4 (MONOTONICITY). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) and
a
′

i = ⟨sϑ′i , (µ
′

i , ν
′

i)⟩(i = 1, 2, · · · , n) be two collections of PLFNs, w = (w1,w2, · · · ,wn)T

be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and
∑n

i=1 wi = 1, and
P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. If sϑi ≤ sϑ′i , µi ≤ µ

′

i and νi ≥ ν
′

i , then

PFLWMMP(a1, · · · , an) ≤ PFLWMMP(a
′

1, · · · , a
′

n).

PROPERTY 5 (BOUNDEDNESS). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a col-300

lection of PLFNs, P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector, w = (w1,w2, · · · ,wn)T

be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and
∑n

i=1 wi = 1,

a− = ⟨min1≤i≤n{sϑi }, (min1≤i≤n{µi},max1≤i≤n{νi})⟩,
a+ = ⟨max1≤i≤n{sϑi }, (max1≤i≤n{µi},min1≤i≤n{νi})⟩,

then

a− ≤ PFLWMMP(a1, · · · , an) ≤ PFLWMMP(a
′

1, · · · , a
′

n) ≤ a+.

Now, we will develop some special cases of PFLWMM operator with respect to
the parameter vector. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,305

w = (w1,w2, · · · ,wn)T be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and∑n
i=1 wi = 1, and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector.

(1) If P = (1, 0, · · · , 0), PFLWMM operator will reduces to

PFLWMM(1,0,··· ,0)(a1, · · · , an) = ⟨s∑n
j=1

w j
n ϑ j
, (

√√
1 −

n∏
j=1

(1 − µ2
j)

w j
n ,

n∏
j=1

ν
w j
n

j )⟩. (16)
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(2) If P = (

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0), PFLWMM operator will reduces to Pythagorean

fuzzy linguistic weighted Maclaurin symmetric mean (PFLWMSM) operator310

PFLWMM(

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0)(a1, · · · , an) = ⟨s

( 1
Ck

n
(
∑

1≤i1≤···≤ik≤n(
∏k

j=1(w jϑi j ))))
1
k
,

(

√√√
(1 − (

∏
1≤i1≤···≤ik≤n

(1 −
k∏

j=1

(1 − µ2
i j

)w j )
1

Ck
n ))

1
k ,

√√√
1 − (1 − (

∏
1≤i1≤···≤ik≤n

(1 −
k∏

j=1

(1 − ν2w j

i j
))

1
Ck

n ))
1
k )⟩. (17)

4. PYTHAGOREAN FUZZY LINGUISTIC DUAL WEIGHTED MUIRHEAD
MEAN OPERATORS

It is well-known that geometric average operator is the dual operator of arithmetic
average operator. Similarly, we study the Pythagorean fuzzy linguistic dual weighted
Muirhead mean operators in this section.315

4.1. Pythagorean Fuzzy Linguistic Dual Muirhead Mean Operators
DEFINITION 4. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,

A = {a1, a2, · · · , an} and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. Then a
Pythagorean fuzzy linguistic Dual Muirhead mean operator is a function PFLDMMP:
An → A, and320

PFLDMMP(a1, · · · , an) =
1∑n

j=1 p j
(⊗θ∈S n (⊕n

j=1 p jaθ( j)))
1
n! , (18)

where θ( j)( j = 1, 2, · · · , n) is any a permutation of (1, 2, · · · , n) and S n is the collection
of all permutation of θ( j)( j = 1, 2, · · · , n).

THEOREM 3. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs and
P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. Then PFLDMMP(a1, · · · , an) is still
a PFLN and325

PFLDMMP(a1, · · · , an) = ⟨s 1∑n
j=1 p j

(
∏
θ∈S n (

∑n
j=1 p jϑθ( j)))

1
n!
,

(

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! )

1∑n
j=1 p j ,

(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j )⟩. (19)

Proof. Firstly, we prove Eq. (19). According to the operational law of PFLNs, we
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obtain

p jaθ( j) = ⟨sp jϑθ( j) , (
√

1 − (1 − ν2θ( j))
p j , ν

p j

θ( j))⟩, and

n∑
j=1

p jaθ( j) = ⟨s∑n
j=1 p jϑθ( j) , (

√√
1 −

n∏
j=1

(1 − ν2θ( j))
p j ,

n∏
j=1

ν
p j

θ( j))⟩,

then we get

⊗θ∈S n ⊕n
j=1 p jaθ( j) = ⟨s∏θ∈S n

∑n
j=1 p jϑθ( j) , (

∏
θ∈S n

√√
1 −

n∏
j=1

(1 − µ2
θ( j))

p j ,

√√
1 −
∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))⟩,

and

(⊗θ∈S n ⊕n
j=1 p jaθ( j))

1
n! = ⟨s

(
∏
θ∈S n
∑n

j=1 p jϑθ( j))
1
n!
, ((
∏
θ∈S n

√√
1 −

n∏
j=1

(1 − µ2
θ( j))

p j )
1
n! ,

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))

1
n! )⟩.

Therefore,330

1∑n
j=1 p j

(⊕θ∈S n ⊗n
j=1 aθ( j)p j )

1
n! = ⟨s 1∑n

j=1 p j
(
∑
θ∈S n

n∏
j=1

ϑ
p j

θ( j))
1
n! ,

(

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! )

1∑n
j=1 p j ,

(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j )⟩.

In addition, we need to prove PFLDMMP(a1, · · · , an) is also a PFLN.
Since µθ( j) ∈ [0, 1], we have (1− µ2

θ( j))
p j ∈ [0, 1] and

∏n
j=1(1− µ2

θ( j))
p j ∈ [0, 1]. And

then

1 − (
n∏

j=1

(1 − µ2
θ( j))

p j ) ∈ [0, 1] and (1 − (
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! ∈ [0, 1].

And so, ∏
θ∈S n

(1 − (
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! ∈ [0, 1].
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Further,335

1 −
∏
θ∈S n

(1 − (
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! ∈ [0, 1]

and

(1 −
∏
θ∈S n

(1 − (
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! )

1∑n
j=1 p j ∈ [0, 1].

And so √√
1 − (1 −

∏
θ∈S n

(1 − (
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! )

1∑n
j=1 p j ∈ [0, 1].

Similarly, we have√√
(1 − (

∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ∈ [0, 1].

Let

µ =

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! )

1∑n
j=1 p j ,

ν =

√√
(1 − (

∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j ,

that is, µ, ν ∈ [0, 1].340

Now we need to prove µ2 + ν2 ∈ [0, 1].
Since µ2

θ( j) + ν
2
θ( j) ≤ 1, then ν2θ( j) ≤ 1 − µ2

θ( j). Furthermore, we have

µ2 + ν2 = 1 − (1 − (
∏
θ∈S n

(1 −
n∏

j=1

(1 − ν2θ( j))
p j ))

1
n! )

1∑n
j=1 p j

+(1 − (
∏
θ∈S n

(1 − (
n∏

j=1

ν
p j

θ( j))
2))

1
n! )

1∑n
j=1 p j

≤ 1 − (1 − (
∏
θ∈S n

(1 −
n∏

j=1

(1 − µ2
θ( j))

p j ))
1
n! )

1∑n
j=1 p j

+(1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(1 − µ2
θ( j))

p j )))
1
n! )

1∑n
j=1 p j = 1.

That is, µ2 + ν2 ∈ [0, 1]. In addition, obviously, we have s 1∑n
j=1 p j

(
∏
θ∈S n (

∑n
j=1 p jϑθ( j)))

1
n!
∈ S .

Hence, PFLDMMP(a1, · · · , an) is also a PFLN.
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EXAMPLE 3. Let a1 = ⟨s2, (0.5, 0.3)⟩, a2 = ⟨s4, (0.7, 0.5)⟩, a3 = ⟨s3, (0.8, 0.2)⟩345

and P = (1, 0.5, 0.4). According to Eq. (6), we have

s 1∑3
j=1 p j

((
∏
θ∈S 3

(
∑3

j=1 p jϑθ( j)))
1
3! )
= sa,

where
a = 1

1+0.5+0.4×((2×1+4×0.5+3×0.4)×(2×1+3×0.5+4×0.4)×(4×1+2×0.5+3×
0.4)×(4×1+3×0.5+2×0.4)×(3×1+4×0.5+2×0.4)×(3×1+2×0.5+4×0.4))

1
6 = 2.9904

and350 √√√
1 − (1 − (

∏
θ∈S 3

(1 − (
3∏

j=1

(1 − µ2
θ( j))

p j ))
1
3! )

1∑3
j=1 p j )

= (1 − (1 − ((1 − (1 − 0.52) × (1 − 0.72)0.5 × (1 − 0.82)0.4)
×(1 − (1 − 0.52) × (1 − 0.82)0.5 × (1 − 0.72)0.4) × (1 − (1 − 0.72) × (1 − 0.52)0.5

×(1 − 0.82)0.4) × (1 − (1 − 0.72) × (1 − 0.82)0.5 × (1 − 0.52)0.4) × (1 − (1 − 0.82)
×(1 − 0.52)0.5 × (1 − 0.72)0.4) × (1 − (1 − 0.82) × (1 − 0.72)0.5

×(1 − 0.52)0.4))
1
3! )

1
1+0.5+0.4 )

1
2 = 0.6790.

(

√√√
1 − (
∏
θ∈S 3

(1 − (
3∏

j=1

ν
p j

θ( j))
2))

1
3! )

1∑3
j=1 p j = ((1 − ((1 − (0.3 × 0.50.5 × 0.20.4)2)

×(1 − (0.3 × 0.20.5 × 0.50.4)2) × (1 − (0.5 × 0.30.5 × 0.20.4)2)
×(1 − (0.5 × 0.20.5 × 0.30.4)2) × (1 − (0.2 × 0.30.5 × 0.50.4)2)

×(1 − (0.2 × 0.50.5 × 0.30.4)2))
1
6 )

1
2 )

1
1+0.5+0.4 = 0.3178;

Therefore, PFLDMMP(a1, a2, a3) = ⟨s2.9904, (0.6790, 0.3178)⟩.
Similar to Property 1, 2, 3, it is easy to prove PFLDMMP(a1, · · · , an) are idempo-

tent, bounded, and monotonic, the details of their proofs are omitted.
PROPERTY 6 (IDEMPOTENCY). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a

collection of PLFNs, P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector and all ai(i =355

1, 2, · · · , n) are equal, i.e., ai = a = ⟨sϑ, (µ, ν)⟩(i = 1, 2, · · · , n), then

PFLDMMP(a1, · · · , an) = a.

PROPERTY 7 (MONOTONICITY). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) and
a
′

i = ⟨sϑ′i , (µ
′

i , ν
′

i)⟩(i = 1, 2, · · · , n) be two collections of PLFNs, P = (p1, p2, · · · , pn) ∈
Rn be a parameter vector. If sϑi ≤ sϑ′i , µi ≤ µ

′

i and νi ≥ ν
′

i , then

PFLDMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′

n).

PROPERTY 8 (BOUNDEDNESS). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a360

collection of PLFNs, P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector,

a− = ⟨min1≤i≤n{sϑi },min1≤i≤n{µi},max1≤i≤n{νi}⟩,
a+ = ⟨max1≤i≤n{sϑi },max1≤i≤n{µi},min1≤i≤n{νi}⟩,
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then

a− ≤ PFLDMMP(a1, · · · , an) ≤ PFLMMP(a
′

1, · · · , a
′

n) ≤ a+.

Now, we will develop some special cases of PFLDMM operator with respect to the
parameter vector. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs and
P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector.365

(1) If P = (1, 0, · · · , 0), PFLDMM operator will reduces to Pythagorean fuzzy
linguistic geometric averaging (PFLGA) operator

PFLDMM(1,0,··· ,0)(a1, · · · , an) = ⟨s∏n
j=1 ϑ

1
n
i

, (
n∏

j=1

µ
1
n
j ,

√√
1 −

n∏
j=1

(1 − ν2j )
1
n ⟩. (20)

(2) If P = (λ, 0, · · · , 0), PFLDMM operator will reduces to generalized Pythagore-
an fuzzy linguistic geometric (GPFLG) operator

PFLDMM(1,0,··· ,0)(a1, · · · , an)

= ⟨s 1
λ (
∏n

j=1(λϑi)λ)
1
n
, (

√√
1 − (1 −

n∏
j=1

(1 − (1 − µ2
j )
λ)

1
n )

1
λ , (

√√
1 −

n∏
j=1

(1 − ν2λj )
1
n )

1
λ )⟩.

(21)

(3) If P = (

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0), PFLDMM operator will reduces to Pythagorean370

fuzzy linguistic geometric Maclaurin symmetric mean (PFLGMSM) operator

PFLDMM(

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0)(a1, · · · , an) = ⟨s

1
k (
∏

1≤i1≤···≤ik≤1(
∑k

j=1 ϑi j ))
1

Ck
n

,

(

√√√
1 − (1 − (

∏
1≤i1≤···≤ik≤n

(1 −
k∏

j=1

(1 − µ2
i j

))
1

Ck
n ))

1
k ,

(

√√√
1 −

∏
1≤i1≤···≤ik≤n

(1 − (
k∏

j=1

νi j )2)
1

Ck
n )

1
k )⟩. (22)

(4) If P = (1, 1, · · · , 1), PFLDMM operator will reduces to Pythagorean fuzzy
linguistic arithmetic averaging (PFLMA) operator

PFLDMM(1,1,··· ,1)(a1, · · · , an) = ⟨s 1
n (
∑n

j=1 ϑ j), (

√√
1 − (

n∏
j=1

(1 − µ2
j ))

1
n , (

n∏
j=1

ν j)
1
n )⟩. (23)

(5) If P = ( 1
n ,

1
n , · · · ,

1
n ), PFLMM operator will reduces to Pythagorean fuzzy lin-

guistic arithmetic averaging (PFLAA) operator375

PFLDMM( 1
n ,

1
n ,··· ,

1
n )(a1, · · · , an) = ⟨s 1

n (
∑n

j=1 ϑ j), (

√√
1 − (

n∏
j=1

(1 − µ2
j ))

1
n , (

n∏
j=1

ν j)
1
n )⟩. (24)
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4.2. Pythagorean Fuzzy Linguistic Dual Weighted Muirhead Mean Operators
Similar to PFLWMM operators. In this Section, we proposed the PFLDWMM

aggregation operators which consider the weights of attributes in the process of infor-
mation aggregation.

DEFINITION 5. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,380

A = {a1, a2, · · · , an}, w = (w1,w2, · · · ,wn)T be the weight vector of ai(i = 1, 2, · · · , n)
with wi ∈ [0, 1] and

∑n
i=1 wi = 1, and P = (p1, p2, · · · , pn) ∈ Rn be a parameter

vector. Then a Pythagorean fuzzy linguistic dual weighted Muirhead mean operator is
a function PFLDWMMP: An → A, and

PFLDWMMP(a1, · · · , an) =
1∑n

j=1 p j
(⊗θ∈S n (⊕n

j=1 p j(aθ( j))wθ( j) ))
1
n! , (25)

where θ( j)( j = 1, 2, · · · , n) is any a permutation of (1, 2, · · · , n) and S n is the collection385

of all permutation of θ( j)( j = 1, 2, · · · , n).
THEOREM 4. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,

w = (w1,w2, · · · ,wn)T be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and∑n
i=1 wi = 1, and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector. Then PFLDWMMP(a1, · · · , an)

is still a PFLN and390

PFLDWMMP(a1, · · · , an) = ⟨s 1∑n
j=1 p j

(
∏
θ∈S n (

∑n
j=1 p j(ϑθ( j))

wθ( j) ))
1
n!
,

(

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − (µ2
θ( j))

wθ( j) )p j ))
1
n! )

1∑n
j=1 p j ,

(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(1 − (1 − ν2θ( j))
wθ( j) )p j )))

1
n! )

1∑n
j=1 p j )⟩. (26)

Proof. Since aθ( j) is a PFLN, we have awθ( j)

θ( j) is also a PFLN. By the operation of

PFLNs, we have awθ( j)

θ( j) = (µwθ( j)

θ( j) ,
√

1 − (1 − ν2θ( j))
wθ( j) ). Therefore, we can directly obtain

the result according to Theorem 2.
EXAMPLE 4. Let a1 = ⟨s2, (0.3, 0.5)⟩, a2 = ⟨s4, (0.2, 0.4)⟩, a3 = ⟨s3, (0.6, 0.2)⟩,

w = (0.25, 0.4, 0.35) and P = (1, 1, 0). According to Eq. (6), since395

1∑3
j=1 p j

((
∏
θ∈S 3

(
3∑

j=1

p j(ϑθ( j))wθ( j) )))
1
3! =

1
1 + 1 + 0

× ((20.25 + 40.4) × (20.25 + 30.35)

×(40.4 + 20.25) × (40.4 + 30.35) × (30.35 + 40.4) × (30.35 + 20.25))
1
3! = 1.5373
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and √√√
1 − (1 − (

∏
θ∈S 3

(1 − (
3∏

j=1

(1 − (µ2
θ( j))

wθ( j) )p j ))
1
3! )

1∑3
j=1 p j

= (1 − (1 − ((1 − (1 − 0.30.5) × (1 − 0.20.8)) × (1 − (1 − 0.30.5) × (1 − 0.60.7))
×(1 − (1 − 0.20.8) × (1 − 0.30.5)) × (1 − (1 − 0.20.8) × (1 − 0.60.7))

×(1 − (1 − 0.60.7) × (1 − 0.30.5) × (1 − (1 − 0.60.7) × (1 − 0.20.8))))
1
3! )

1
1+1+0 )

1
2 = 0.7206.

(

√√√
1 − (
∏
θ∈S 3

((1 − (
3∏

j=1

(1 − (1 − µ2
θ( j))

wθ( j) ))))
1
3! )

1
1+1

= ((1 − (1 − ((1 − (1 − 0.52)0.25) × (1 − (1 − 0.42)0.4)) × (1 − (1 − (1 − 0.52)0.25)
×(1 − (1 − 0.22)0.35)) × (1 − (1 − (1 − 0.42)0.4) × (1 − (1 − 0.52)0.25)) × (1 − (1 − (1 − 0.42)0.4)
×(1 − (1 − 0.22)0.35)) × (1 − (1 − (1 − 0.22)0.35) × (1 − (1 − 0.52)0.25)) × (1 − (1 − (1 − 0.22)0.35)

×(1 − (1 − 0.42)0.4)))
1
6 )

1
2 )

1
1+1+0 = 0.2167;

Therefore, PFLDWMMP(a1, a2, a3) = ⟨s1.5373, (0.7206, 0.2167)⟩.
Similar to Property 7 and Property 8, we can prove PFLDWMMP(a1, · · · , an) are

bounded, and monotonic.
PROPERTY 9 (MONOTONICITY). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) and400

a
′

i = ⟨sϑ′i , (µ
′

i , ν
′

i)⟩(i = 1, 2, · · · , n) be two collections of PLFNs, w = (w1,w2, · · · ,wn)T

be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and
∑n

i=1 wi = 1, and
P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector.If sϑi ≤ sϑ′i , µi ≤ µ

′

i and νi ≥ ν
′

i , then

PFLDWMMP(a1, · · · , an) ≤ PFLDWMMP(a
′

1, · · · , a
′

n).

PROPERTY 10 (BOUNDEDNESS). Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a
collection of PLFNs, P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector, w = (w1,w2, · · · ,wn)T

405

be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and
∑n

i=1 wi = 1,

a− = ⟨min1≤i≤n{sϑi }, (min1≤i≤n{µi},max1≤i≤n{νi})⟩,
a+ = ⟨max1≤i≤n{sϑi }, (max1≤i≤n{µi},min1≤i≤n{νi})⟩,

then

a− ≤ PFLWMMP(a1, · · · , an) ≤ PFLDWMMP(a
′

1, · · · , a
′

n) ≤ a+.

Now, we will develop some special cases of PFLDWMM operator with respect to
the parameter vector. Let ai = ⟨sϑi , (µi, νi)⟩(i = 1, 2, · · · , n) be a collection of PLFNs,
w = (w1,w2, · · · ,wn)T be the weight vector of ai(i = 1, 2, · · · , n) with wi ∈ [0, 1] and410 ∑n

i=1 wi = 1, and P = (p1, p2, · · · , pn) ∈ Rn be a parameter vector.
(1) If P = (1, 0, · · · , 0), we have

PFLDWMM(1,0,··· ,0)(a1, · · · , an) = ⟨s∏n
j=1 ϑ

w j
n

j

, (
n∏
j

µ
w j
n

j ,

√√
1 −

n∏
j

(1 − ν2j )
w j
n )⟩. (27)
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(2) If P = (

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0), PFLDWMM operator will reduces to Pythagorean

fuzzy linguistic weighted geometric Maclaurin symmetric mean (PFLWGMSM) oper-
ator415

PFLDWMM(

k︷      ︸︸      ︷
1, 1, · · · , 1,

n−k︷   ︸︸   ︷
0, · · · , 0)(a1, · · · , an) = ⟨s

1
k (
∏

1≤i1≤···≤ik≤n(
∑k

j=1 ϑ
wi j
i j

))
1

Ck
n

,

(

√√√
1 − (1 − (

∏
1≤i1≤···≤ik≤n

(1 −
k∏

j=1

(1 − µ2w j

i j
))

1
Ck

n ))
1
k ,

(

√√√
1 −

∏
1≤i1≤···≤ik≤n

(1 − (
k∏

j=1

(1 − (1 − ν2i j
)wi j ))

1
Ck

n )
1
k ))⟩. (28)

5. MODEL FOR MULTIPLE ATTRIBUTE DECISION MAKING WITH
PYTHAGOREAN FUZZY LINGUISTIC INFORMATION

In this section, we develop a MADM method with Pythagorean fuzzy linguistic
information based on the proposed PFLWMM operator or PFLDWMM operator. The
following assumptions or notations are used to represent the MADM problems for po-420

tential evaluation of emerging technology commercialization with Pythagorean fuzzy
information.

Based on the given linguistic term set S = {s0, s1, · · · , sg}, let A = {A1, A2, · · · , Am}
be a set of m alternatives, and G = {G1,G2, · · · ,Gn} be the set of attributes, and w =
{w1, · · · ,wn} be the weight vector of attributes with wi ≥ 0 and

∑n
i=1 wi = 1. Suppose425

that A = (ai j)m×n is the decision making matrix, where ai j = ⟨sϑi j , (µi j, νi j)⟩, sϑi j ∈ S , µi j

indicates the indicates the degree that the alternative Ai satisfies the attribute G j given
by the decision maker, νi j indicates the degree that the alternative Ai does not satisfy
the attribute G j given by the decision maker, µi j, νi j ∈ [0, 1] and µ2

i j + ν
2
i j ∈ [0, 1], i =

1, 2, · · · ,m, j = 1, 2, · · · , n.430

In the following, two novel MADM methods are developed with Pythagorean fuzzy
linguistic information based on PFLWMM operator or PFLDWMM operator, which
are shown in the following:

Step 1. Aggregate all assessment values ai j = ⟨sθi j , (µi j, νi j)⟩ of the alternative
Ai(i = 1, 2, · · · ,m) on all attributes G j( j = 1, 2, · · · , n) into the overall assessment435

ai = ⟨sθi , (µi, νi)⟩ based on the

ai = ⟨sϑi , (µi, νi)⟩ = PFLMMP(ai1, · · · , ain) = ⟨s
( 1

n! (
∑
θ∈S n (

∏n
j=1(wθ( j)ϑθ(i j))

p j )))
1∑n

j=1 p j
,

((

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(1 − (1 − µ2
θ(i j))

wθ(i j) )p j )))
1
n! )

1∑n
j=1 p j ,

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − (ν2θ(i j))
wθ( j) )p j ))

1
n! )

1∑n
j=1 p j )⟩. (29)
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or

ai = ⟨sϑi , (µi, νi)⟩ = PFLDWMMP(ai1, · · · , ain) = ⟨s 1∑n
j=1 p j

(
∏
θ∈S n (

∑n
j=1 p j(ϑθ(i j))

wθ( j) ))
1
n!
,

(

√√
1 − (1 − (

∏
θ∈S n

(1 −
n∏

j=1

(1 − (µ2
θ(i j))

wθ( j) )p j ))
1
n! )

1∑n
j=1 p j ,

(

√√
1 − (
∏
θ∈S n

(1 − (
n∏

j=1

(1 − (1 − ν2θ(i j))
wθ( j) )p j )))

1
n! )

1∑n
j=1 p j )⟩. (30)

Step 2. Calculate the score values S (ai) of all collective overall values to rank the
all alternatives Ai(i = 1, 2, · · · ,m), the bigger the S (ai), the better the Ai, where

S (ai) =
1
2

(µ2
i + 1 − ν2i ) × sϑi = s 1

2 (µ2
i +1−ν2i )×ϑi

. (31)

If there is no difference between two scores ai and a j, then we need to calculate the440

accuracy degree H(ai) and H(a j) by the following equation:

H(ai) =
1
2

(µ2
i + ν

2
i ) × sϑi = s 1

2 (µ2
i +ν

2
i )×ϑi
. (32)

and then rank the alternatives Ai and A j accordance with degrees H(ai) and H(a j).
Step 3. Rank all alternatives Ai(i = 1, 2, · · · ,m) and determine the desirable alter-

native according to S (ai) and H(ai)(i = 1, 2, · · · ,m).
Step 4. End.445

6. NUMERICAL EXAMPLE AND COMPARATIVE ANALYSIS

6.1. Numerical Example
In order to show the application of the proposed approach in this paper, an illustra-

tive example was cited and adapted from [4], which an evaluation on the emergency
response capabilities of relevant department when some disasters occurred. There is a450

panel with four emerging departments Ai(i = 1, 2, 3, 4) should be considered that have
taken part in the rescue work. A1 is the transportation department, A2 is the health de-
partments, A3 is the telecommunications department, and A4 is the supplies department.
The government needs to give an evaluation according to four attributes: (1) G1 is the
emergency forecasting capability; (2) G2 is the emergency process capability; (3) G3 is455

the after-disaster loss evaluation capability; and (4) G4 is the after-disaster reconstruc-
tion capability, w = (0.1, 0.4, 0.2, 0.3) is the weight vector of them. Several experts
are invited to evaluate the four departments in anonymity with the linguistic term set
S = {s0 = extremely low, s1 = very low, s2 = low, s3 = medium, s4 = high, s5 =

very high, s6 = extremely high}. The four possible alternatives {A1, A2, A3, A4} are460

evaluated by using the Pythagorean fuzzy linguistic information, and the Pythagorean
fuzzy linguistic decision matrix A = (ai j)4×5 is shown in Table 1.

(1) Based on PFLWMM operator to drive the collective overall value when param-
eter P = (1, 1, 1, 1), we obtain following:
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Table 1: Pythagorean fuzzy linguistic decision matrix

G1 G2 G3 G4

A1 ⟨s2, (0.6, 0.4)⟩ ⟨s3, (0.6, 0.4)⟩) ⟨s4, (0.8, 0.2)⟩ ⟨s4, (0.7, 0.4)⟩
A2 ⟨s3, (0.7, 0.5)⟩ ⟨s5, (0.7, 0.5)⟩) ⟨s5, (0.7, 0.4)⟩ ⟨s4, (0.7, 0.3)⟩
A3 ⟨s2, (0.6, 0.3)⟩ ⟨s4, (0.6, 0.5)⟩) ⟨s5, (0.7, 0.3)⟩ ⟨s4, (0.6, 0.4)⟩
A4 ⟨s3, (0.8, 0.2)⟩ ⟨s4, (0.8, 0.3)⟩) ⟨s4, (0.6, 0.4)⟩ ⟨s5, (0.8, 0.3)⟩

Step 1. Based on Eq.(29), we have465

a1 = ⟨s0.6928, (0.3530, 0.7978)⟩; a2 = ⟨s0.8712, (0.3704, 0.8334)⟩;
a3 = ⟨s0.7872, (0.3210, 0.8073)⟩; a4 = ⟨s0.8712, (0.4057, 0.7715)⟩.

Step 2. Based on Eq.(31), we utilize the score function to calculate the score values
of collective overall assessment values ai(i = 1, 2, 3, 4),

S (a1) = s0.1691; S (a2) = s0.1928; S (a3) = s0.1777; S (a4) = s0.2481.

Step 3.According the score values of ai(i = 1, 2, 3, 4) calculated in Step 2, all
feasible alternative Ai(i = 1, 2, 3, 4) are ranked as follows:

A1 ≺ A3 ≺ A2 ≺ A4,

Therefore, the desirable alternative is A4.470

(2) Based on PFLDWMM operator to drive the collective overall value when pa-
rameter P = (1, 1, 1, 1), we obtain following:

Step 1. Based on Eq.(30), we have

a1 = ⟨s1.3647, (0.9208, 0.1623)⟩; a2 = ⟨s1.4382, (0.9249, 0.2036)⟩;
a3 = ⟨s1.4271, (0.9034, 0.1772)⟩; a4 = ⟨s1.4493, (0.9416, 0.1396)⟩.

Step 2. Based on Eq.(31), we utilize the score function to calculate the score values
of collective overall assessment values ai(i = 1, 2, 3, 4),475

S (a1) = s1.2429; S (a2) = s1.3044; S (a3) = s1.2735; S (a4) = s1.3531.

Step 3. According the score values of ai(i = 1, 2, 3, 4) calculated in Step 2, all
feasible alternative Ai(i = 1, 2, 3, 4) are ranked as follows:

A1 ≺ A3 ≺ A2 ≺ A4,

Therefore, the desirable alternative is A4.
6.2. The Influence of the Parameter Vector P on the Decision Making Results

In order to show the influence of the parameter vectors P on the decision mak-480

ing results, we use different parameter vectors P in our proposed methods based on
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Table 2: Ranking results by using different parameter vector P in PFLWMM operator

Parameter Vector P The score values of Ai(i = 1, 2, 3, 4) Ranking Results
(1, 0, 0, 0) S (a1) = s0.6807, S (a2) = s0.7052, S (a3) = s0.6806, S (a4) = s0.7536 A4 ≻ A2 ≻ A1 ≻ A3
(1, 1, 0, 0) S (a1) = s0.4520, S (a2) = s0.4801, S (a3) = s0.4564, S (a4) = s0.5427 A4 ≻ A2 ≻ A3 ≻ A1
(1, 1, 1, 0) S (a1) = s0.2895, S (a2) = s0.3154, S (a3) = s0.2978, S (a4) = s0.3764 A4 ≻ A2 ≻ A3 ≻ A1
(1, 1, 1, 1) S (a1) = s0.1691, S (a2) = s0.1928, S (a3) = s0.1777, S (a4) = s0.2481 A4 ≻ A2 ≻ A3 ≻ A1

( 1
4 ,

1
4 ,

1
4 ,

1
4 ) S (a1) = s0.1691, S (a2) = s0.1928, S (a3) = s0.1777, S (a4) = s0.2481 A4 ≻ A2 ≻ A3 ≻ A1

(2, 0, 0, 0) S (a1) = s0.5079, S (a2) = s0.5436, S (a3) = s0.5095, S (a4) = s0.6267 A4 ≻ A2 ≻ A3 ≻ A1
(3, 0, 0, 0) S (a1) = s0.3954, S (a2) = s0.4410, S (a3) = s0.3992, S (a4) = s0.5491 A4 ≻ A2 ≻ A3 ≻ A1

Table 3: Ranking results by using different parameter vector P in PFLDWMM operator

Parameter Vector P The score values of Ai(i = 1, 2, 3, 4) Ranking Results
(1, 0, 0, 0) S (a1) = s0.1217, S (a2) = s0.1242, S (a3) = s0.1143, S (a4) = s0.1391 A4 ≻ A2 ≻ A1 ≻ A3
(1, 1, 0, 0) S (a1) = s0.4616, S (a2) = s0.4967, S (a3) = s0.4743, S (a4) = s0.5315 A4 ≻ A2 ≻ A3 ≻ A1
(1, 1, 1, 0) S (a1) = s0.8262, S (a2) = s0.8809, S (a3) = s0.8532, S (a4) = s0.9065 A4 ≻ A2 ≻ A3 ≻ A1
(1, 1, 1, 1) S (a1) = s1.2429, S (a2) = s1.3044, S (a3) = s1.2735, S (a4) = s1.3531 A4 ≻ A2 ≻ A3 ≻ A1

( 1
4 ,

1
4 ,

1
4 ,

1
4 ) S (a1) = s1.2429, S (a2) = s1.3044, S (a3) = s1.2735, S (a4) = s1.3531 A4 ≻ A2 ≻ A3 ≻ A1

(2, 0, 0, 0) S (a1) = s0.3584, S (a2) = s0.3728, S (a3) = s0.3409, S (a4) = s0.4060 A4 ≻ A2 ≻ A1 ≻ A3
(3, 0, 0, 0) S (a1) = s0.6303, S (a2) = s0.6622, S (a3) = s0.6080, S (a4) = s0.7072 A4 ≻ A2 ≻ A1 ≻ A3

PFLWMM and PFLDWMM operators to rank the alternatives. The ranking results are
shown in Table 2 and Table 3.

We explain the following aspects to illustrate the influence of parameter vector P
on the decision making results:485

(1) We see from the Section 3 and Section 4 that our methods are more gener-

al. Specially, when P = (
︷      ︸︸      ︷
1, 1, · · · , 1

k
,
︷      ︸︸      ︷
0, 0, · · · , 0

k
), the PFLWMM operator will become

Pythagorean fuzzy linguistic weighted Maclaurin mean, which is also family aggrega-
tion operators when the parameter k takes different value.

(2) It follows from Table 2 and Table 3 that the aggregation results obtained by490

PFLWMM and PFLDWMM operators are almost remain unchanged in this example
though the parameter vector P change, this phenomenon also illustrates PFLWMM and
PFLDWMM operators have good robust property.

(3) Parameter vector P can capture interrelationship between the individual argu-
ments that can be fully taken into account. As far as the PFLWMM operator is con-495

cerned, we can find from Table 2 that the more interrelationships of attributes which
we consider, the smaller value of score functions, that is, the parameter vector P have
greater control ability, the values of score function will become greater. However, for
the IFDWMM operator, the result is just the opposite, the more interrelationships of
attributes we consider, the greater value of score functions will become. The parameter500

vector P have greater control ability, the values of score function will become small.
So, different parameter vector P can be regarded as the decision makers’ risk prefer-
ence.
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6.3. Comparisons With Other Existing Methods
In order to verify the effectiveness of the proposed methods with PFLWMM oper-505

ator and PFLDWMM operator,we compare our proposed methods with other existing
methods including the PFLWA operator, PFLGA operator and PFMSM operator. The
results are shown in Table 4, which indicates that five methods have the same desirable
alternative, which further verifies the validity of the method proposed in this paper with
PFLWMM operator and PFLDWMM operator.

Table 4: Ranking results by using different methods

Aggregation Operator Parameter Vector Ranking Results
PFLWA No A4 ≻ A2 ≻ A3 ≻ A1
PFLGW No A4 ≻ A2 ≻ A3 ≻ A1

PFLMSM (1, 1, 1, 0) A4 ≻ A2 ≻ A3 ≻ A1
PFLWMM in this paper (1, 1, 1, 1) A4 ≻ A2 ≻ A3 ≻ A1

PFLDWMM in this paper (1, 1, 1, 1) A4 ≻ A2 ≻ A3 ≻ A1

510

In the following, we will give some comparisons of the three methods and our
proposed methods with respect to some characteristic, which are listed in Table 5.

Table 5: Ranking results by using different methods

Methods captures interrelationship of MAs makes method flexible by PV
PFLWA × ×
PFLGW × ×

PFLMSM
√ √

PFLWMM in this paper
√ √

PFLDWMM in this paper
√ √

where MA means multiple attributes and PV means parameter vector.

PFLWA and PFLGA are special cases of PFLWMM and PFLDWMM operator.
Compared with the method based on the PFLWA operator and PFLGA operator, in
which there are two limitations: (1)the method based on PFLWA and PFLGA operator515

thinks that the input arguments are independent; (2) the method based on PFLWA and
PFLGA operator doesn’t consider the interrelationship among input arguments. How-
ever, the new proposed operators in this paper can also consider the interrelationship
among all input arguments and they are also generalization of most existing aggre-
gation operators. Therefore, the proposed methods are more general and flexible to520

solve MADM problems than PFLWA and PFLGA. Compared with the method in [41]
based on the PFMSM operator, which consider interrelationship of multi-input argu-
ments, but it can not deal with linguistic information. Therefore, we extend PFMSM to
PFLWSMM and PFLDWMSM which are special cases of PFLWMM and PFLDWMM

operators when parameter vector P = (
︷      ︸︸      ︷
1, 1, · · · , 1

k
,
︷      ︸︸      ︷
0, 0, · · · , 0

k
). Thus, the new methods525

proposed in this paper can make the linguistic information aggregation process more
flexible by the parameter vector P.
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7. CONCLUSIONS

In recent years, aggregation operators play a vital role in decision making and many
aggregation operators under different environment have been developed. But they still530

have some limitations in solving some practical problems. Some traditional Maclau-
rin Symmetric Mean (MSM) operator and intuitionistic MSM operator are generally
suitable for aggregating the information taking the form of crisp numbers and intu-
itionistic fuzzy numbers, but fails in dealing with the Pythagorean linguistic informa-
tion. In this paper, we have investigated the MADM problems with the Pythagorean535

linguistic information based on some new aggregation operators which capture inter-
relationships of multiple attributes among any number of attributes by a parameter
vector P. To begin with, we presented some new Pythagorean fuzzy linguistic MM
aggregation operators to deal with MADM problems with Pythagorean fuzzy linguis-
tic information, including the Pythagorean fuzzy linguistic Muirhead Mean (PFLMM)540

operator, the Pythagorean fuzzy linguistic weighted Muirhead Mean (PFLWMM) op-
erator, the Pythagorean fuzzy linguistic dual Muirhead Mean (PFLDMM) operator, the
Pythagorean fuzzy linguistic dual weighted Muirhead Mean (PFLDWMM) operator.
In addition, the some properties of these new aggregation operators were proved and
some special cases were discussed. Moreover, we presented two new methods to solve545

the MADM problems with Pythagorean fuzzy linguistic information. Finally, we used
an illustrative example to show the feasibility and validity of the new methods by com-
paring with the other existing methods.

In further research, it is necessary to solve the real decision making problems by
applying these operators. In addition, we can develop some new aggregation opera-550

tors on the basis of Muirhead mean operator by considering that MM operator has the
superiority of compatibility.
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