874 research outputs found
Encoding of Marginal Utility across Time in the Human Brain
Marginal utility theory prescribes the relationship between the objective property of the magnitude of rewards and their subjective value. Despite its pervasive influence, however, there is remarkably little direct empirical evidence for such a theory of value, let alone of its neurobiological basis. We show that human preferences in an intertemporal choice task are best described by a model that integrates marginally diminishing utility with temporal discounting. Using functional magnetic resonance imaging, we show that activity in the dorsal striatum encodes both the marginal utility of rewards, over and above that which can be described by their magnitude alone, and the discounting associated with increasing time. In addition, our data show that dorsal striatum may be involved in integrating subjective valuation systems inherent to time and magnitude, thereby providing an overall metric of value used to guide choice behavior. Furthermore, during choice, we show that anterior cingulate activity correlates with the degree of difficulty associated with dissonance between value and time. Our data support an integrative architecture for decision making, revealing the neural representation of distinct subcomponents of value that may contribute to impulsivity and decisiveness
Wavefunctions and the Point of E8 in F-theory
In F-theory GUTs interactions between fields are typically localised at
points of enhanced symmetry in the internal dimensions implying that the
coefficient of the associated operator can be studied using a local
wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit
a maximum symmetry enhancement at a point to E8, and in this case all the
operators of the theory can be associated to the same point. We take initial
steps towards the study of operators in such theories. We calculate
wavefunctions and their overlaps around a general point of enhancement and
establish constraints on the local form of the fluxes. We then apply the
general results to a simple model at a point of E8 enhancement and calculate
some example operators such as Yukawa couplings and dimension-five couplings
that can lead to proton decay.Comment: 46 page
Anomalous Dimensions of Non-Chiral Operators from AdS/CFT
Non-chiral operators with positive anomalous dimensions can have interesting
applications to supersymmetric model building. Motivated by this, we develop a
new method for obtaining the anomalous dimensions of non-chiral double-trace
operators in N=1 superconformal field theories (SCFTs) with weakly-coupled AdS
duals. Via the Hamiltonian formulation of AdS/CFT, we show how to directly
compute the anomalous dimension as a bound state energy in the gravity dual.
This simplifies previous approaches based on the four-point function and the
OPE. We apply our method to a class of effective AdS5 supergravity models, and
we find that the binding energy can have either sign. If such models can be UV
completed, they will provide the first calculable examples of SCFTs with
positive anomalous dimensions.Comment: 38 pages, 2 figures, refs adde
Dark Radiation and Dark Matter in Large Volume Compactifications
We argue that dark radiation is naturally generated from the decay of the
overall volume modulus in the LARGE volume scenario. We consider both
sequestered and non-sequestered cases, and find that the axionic superpartner
of the modulus is produced by the modulus decay and it can account for the dark
radiation suggested by observations, while the modulus decay through the
Giudice-Masiero term gives the dominant contribution to the total decay rate.
In the sequestered case, the lightest supersymmetric particles produced by the
modulus decay can naturally account for the observed dark matter density. In
the non-sequestered case, on the other hand, the supersymmetric particles are
not produced by the modulus decay, since the soft masses are of order the heavy
gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE
Effectiveness of enhanced diabetes care to patients of South Asian ethnicity : the United Kingdom Asian Diabetes Study (UKADS) : a cluster randomised controlled trial
Background: Delivering high quality and evidence based healthcare to deprived sectors of the community is a major goal for society. We investigated the effectiveness of a culturally sensitive enhanced care package in UK general practice in improving cardiovascular risk factors in South Asian patients with type 2 diabetes.
Methods: 21 inner city practices were randomised to intervention (enhanced practice nurse time, link worker and diabetes specialist nurse support) (n=868) or control (standard care) (n=618) groups. Prescribing algorithms with clearly defined targets were provided for all practices. Main outcome measures comprised changes in blood pressure, total cholesterol and glycaemic control (HbA1c) after 2 years.
Findings: At baseline, groups were similar with respect to age, sex and cardiovascular risk factors.
Comparing treatment groups, after adjustment for confounders, and clustering, differences in diastolic blood pressure (1.91mmHg, P=0.0001) and mean arterial pressure (1.36mmHg, P=0.0180) were significant. There were no significant differences between groups for total cholesterol or HbA1c. Economic analysis indicates the nurse-led intervention was not cost-effective.
Across the whole study population systolic blood pressure, diastolic blood pressure and cholesterol decreased significantly by 4.9mmHg, 3.8mmHg and 0.45mmol/L respectively, but there was no change in HbA1c.
Interpretation: Additional, although limited, benefits were observed from our culturally enhanced care package over and above the secular changes achieved in the UK in recent years. Stricter targets in general practice and further measures to motivate patients are needed to maximise healthcare outcomes in South Asian patients with diabetes
D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics
We discuss general properties of D-brane model building at toric
singularities. Using dimer techniques to obtain the gauge theory from the
structure of the singularity, we extract results on the matter sector and
superpotential of the corresponding gauge theory. We show that the number of
families in toric phases is always less than or equal to three, with a unique
exception being the zeroth Hirzebruch surface. With the physical input of three
generations we find that the lightest family of quarks is massless and the
masses of the other two can be hierarchically separated. We compute the CKM
matrix for explicit models in this setting and find the singularities possess
sufficient structure to allow for realistic mixing between generations and CP
violation.Comment: 55 pages, v2: typos corrected, minor comments adde
Rational F-Theory GUTs without exotics
We construct F-theory GUT models without exotic matter, leading to the MSSM
matter spectrum with potential singlet extensions. The interplay of engineering
explicit geometric setups, absence of four-dimensional anomalies, and realistic
phenomenology of the couplings places severe constraints on the allowed local
models in a given geometry. In constructions based on the spectral cover we
find no model satisfying all these requirements. We then provide a survey of
models with additional U(1) symmetries arising from rational sections of the
elliptic fibration in toric constructions and obtain phenomenologically
appealing models based on SU(5) tops. Furthermore we perform a bottom-up
exploration beyond the toric section constructions discussed in the literature
so far and identify benchmark models passing all our criteria, which can serve
as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur
Yukawa hierarchies at the point of in F-theory
We analyse the structure of Yukawa couplings in local SU(5) F-theory models
with enhancement. In this setting the symmetry is broken down to
SU(5) by a 7-brane configuration described by T-branes, all the Yukawa
couplings are generated in the vicinity of a point and only one family of
quarks and leptons is massive at tree-level. The other two families obtain
their masses when non-perturbative effects are taken into account, being
hierarchically lighter than the third family. However, and contrary to previous
results, we find that this hierarchy of fermion masses is not always
appropriate to reproduce measured data. We find instead that different T-brane
configurations breaking to SU(5) give rise to distinct hierarchical
patterns for the holomorphic Yukawa couplings. Only some of these patterns
allow to fit the observed fermion masses with reasonable local model parameter
values, adding further constraints to the construction of F-theory GUTs. We
consider an model where such appropriate hierarchy is realised and
compute its physical Yukawas, showing that realistic charged fermions masses
can indeed be obtained in this case.Comment: 46 pages + appendices, 5 figures. v2, added references and typos
corrected, version accepted on JHEP. v3, typos correcte
Evidence for F(uzz) Theory
We show that in the decoupling limit of an F-theory compactification, the
internal directions of the seven-branes must wrap a non-commutative four-cycle
S. We introduce a general method for obtaining fuzzy geometric spaces via toric
geometry, and develop tools for engineering four-dimensional GUT models from
this non-commutative setup. We obtain the chiral matter content and Yukawa
couplings, and show that the theory has a finite Kaluza-Klein spectrum. The
value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points
on the internal four-cycle S. This relation puts a non-trivial restriction on
the space of gauge theories that can arise as a limit of F-theory. By viewing
the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the
geometry, we argue that this theory admits a holographic dual description in
the large N limit. We also entertain the possibility of constructing string
models with large fuzzy extra dimensions, but with a high scale for quantum
gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde
Massive Abelian Gauge Symmetries and Fluxes in F-theory
F-theory compactified on a Calabi-Yau fourfold naturally describes
non-Abelian gauge symmetries through the singularity structure of the elliptic
fibration. In contrast Abelian symmetries are more difficult to study because
of their inherently global nature. We argue that in general F-theory
compactifications there are massive Abelian symmetries, such as the uplift of
the Abelian part of the U(N) gauge group on D7-branes, that arise from
non-Kahler resolutions of the dual M-theory setup. The four-dimensional
F-theory vacuum with vanishing expectation values for the gauge fields
corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on
along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the
effective four-dimensional gauged supergravity resulting from F-theory
compactifications in the presence of the Abelian gauge factors including the
effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page
- …
