We analyse the structure of Yukawa couplings in local SU(5) F-theory models
with E8 enhancement. In this setting the E8 symmetry is broken down to
SU(5) by a 7-brane configuration described by T-branes, all the Yukawa
couplings are generated in the vicinity of a point and only one family of
quarks and leptons is massive at tree-level. The other two families obtain
their masses when non-perturbative effects are taken into account, being
hierarchically lighter than the third family. However, and contrary to previous
results, we find that this hierarchy of fermion masses is not always
appropriate to reproduce measured data. We find instead that different T-brane
configurations breaking E8 to SU(5) give rise to distinct hierarchical
patterns for the holomorphic Yukawa couplings. Only some of these patterns
allow to fit the observed fermion masses with reasonable local model parameter
values, adding further constraints to the construction of F-theory GUTs. We
consider an E8 model where such appropriate hierarchy is realised and
compute its physical Yukawas, showing that realistic charged fermions masses
can indeed be obtained in this case.Comment: 46 pages + appendices, 5 figures. v2, added references and typos
corrected, version accepted on JHEP. v3, typos correcte