423 research outputs found

    Assessing false-belief understanding in children with autism using a computer application: a pilot study

    Get PDF
    We have developed a False-Belief (FB) understanding task for use on a computer tablet, trying to assess FB understanding in a less social way. It is based on classical FB protocols, and additionally includes a manipulation of language in an attempt to explore the facilitating effect of linguistic support during FB processing. Specifically, the FB task was presented in three auditory conditions: narrative, silent, and interference. The task was assumed to shed new light on the FB difficulties often observed in Autism Spectrum Disorder (ASD). Sixty-eight children with ASD (M = 7.5 years) and an age matched comparison group with 98 typically developing (TD) children were assessed with the FB task. The children with ASD did not perform above chance level in any condition, and significant differences in success rates were found between the groups in two conditions (silent and narrative), with TD children performing better. We discuss implications, limitations, and further developments

    Current profiles and early predictors of reading skills in school-age children with autism spectrum disorders: A longitudinal, retrospective population study

    Get PDF
    This study explores current reading profiles and concurrent and early predictors of reading in children with autism spectrum disorder. Before the age of 3 years, the study cohort underwent a neurodevelopmental assessment following identification in a population-based autism screening. At age 8 years, reading, language and cognition were assessed. Approximately half of the sample (n = 25) were ‘poor readers’ at age 8 years, meaning that they scored below the normal range on tests of single word reading and reading comprehension. And 18 were ‘skilled readers’ performing above cut-offs. The final subgroup (n = 10) presented with a ‘hyperlexic/poor comprehenders’ profile of normal word reading, but poor reading comprehension. The ‘poor readers’ scored low on all assessments, as well as showing more severe autistic behaviours than ‘skilled readers’. Group differences between ‘skilled readers’ and ‘hyperlexics/poor comprehenders’ were more subtle: these subgroups did not differ on autistic severity, phonological processing or non-verbal intelligence quotient, but the ‘hyperlexics/poor comprehenders’ scored significantly lower on tests of oral language. When data from age 3 were considered, no differences were seen between the subgroups in social skills, autistic severity or intelligence quotient. Importantly, however, it was possible to identify oral language weaknesses in those that 5 years later presented as ‘poor readers’ or ‘hyperlexics’

    Bumetanide for autism: more eye contact, less amygdala activation.

    Get PDF
    We recently showed that constraining eye contact leads to exaggerated increase of amygdala activation in autism. Here, in a proof of concept pilot study, we demonstrate that administration of bumetanide (a NKCC1 chloride importer antagonist that restores GABAergic inhibition) normalizes the level of amygdala activation during constrained eye contact with dynamic emotional face stimuli in autism. In addition, eye-tracking data reveal that bumetanide administration increases the time spent in spontaneous eye gaze during in a free-viewing mode of the same face stimuli. In keeping with clinical trials, our data support the Excitatory/Inhibitory dysfunction hypothesis in autism, and indicate that bumetanide may improve specific aspects of social processing in autism. Future double-blind placebo controlled studies with larger cohorts of participants will help clarify the mechanisms of bumetanide action in autism

    Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest

    Get PDF
    The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes

    Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study

    Get PDF
    BACKGROUND: Development of reliable and objective evaluation methods is required, particularly for natural and goal-oriented upper-extremity tasks. Three-dimensional imaging measurement techniques have turned out to be a powerful tool for a quantitative and qualitative assessment of multijoint movements. The purpose of this study was to develop and test a method of three-dimensional motion analysis for the activity "drinking from a glass" and describe the drinking task with kinematic variables in control subjects. METHODS: A protocol was developed for the drinking activity including the set-up of cameras and positions of the markers and the subject. The drinking task included reaching, forward transport with glass, drinking, back transport and returning the hand to the initial position. An optoelectronic system was used for the three-dimensional kinematic motion capture. Movement times, velocities, joint angles and interjoint coordination for shoulder and elbow were computed and analyzed for twenty control subjects. Test-retest consistency was evaluated for six subjects. RESULTS: The test protocol showed good consistency in test-retest. Phase definitions for the drinking task were defined and verified. Descriptive kinematic variables were obtained for movement times, positions, velocities and joint angles for shoulder and elbow joint. Interjoint coordination between shoulder and elbow joint in reaching phase showed a high correlation. CONCLUSION: This study provides a detailed description of the three-dimensional kinematic analysis of the drinking task. Our approach to investigate and analyze a goal-oriented daily activity has a great clinical potential. Consequently, the next step is to use and test this protocol on persons with impairments and disabilities from upper extremities

    Trackways Produced by Lungfish During Terrestrial Locomotion

    Get PDF
    Some primarily aquatic vertebrates make brief forays onto land, creating traces as they do. A lack of studies on aquatic trackmakers raises the possibility that such traces may be ignored or misidentified in the fossil record. Several terrestrial Actinopterygian and Sarcopterygian species have previously been proposed as possible models for ancestral tetrapod locomotion, despite extant fishes being quite distinct from Devonian fishes, both morphologically and phylogenetically. Although locomotion has been well-studied in some of these taxa, trackway production has not. We recorded terrestrial locomotion of a 35 cm African lungfish (Protopterus annectens; Dipnoi: Sarcopterygii) on compliant sediment. Terrestrial movement in the lungfish is accomplished by planting the head and then pivoting the trunk. Impressions are formed where the head impacts the substrate, while the body and fins produce few traces. The head leaves a series of alternating left-right impressions, where each impact can appear as two separate semi-circular impressions created by the upper and lower jaws, bearing some similarity to fossil traces interpreted as footprints. Further studies of trackways of extant terrestrial fishes are necessary to understand the behavioural repertoire that may be represented in the fossil track record

    A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage

    Get PDF
    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate “new head”. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates
    corecore