57 research outputs found

    PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a common neurodegenerative disorder and the leading cause of cognitive impairment. Due to insufficient understanding of the disease mechanisms, there are no efficient therapies for AD. Most studies have focused on neuronal cells, but astrocytes have also been suggested to contribute to AD pathology. We describe here the generation of functional astrocytes from induced pluripotent stem cells (iPSCs) derived from AD patients with PSEN1 Delta E9 mutation, as well as healthy and gene-corrected isogenic controls. AD astrocytes manifest hallmarks of disease pathology, including increased beta-amyloid production, altered cytokine release, and dysregulated Ca2+ homeostasis. Furthermore, due to altered metabolism, AD astrocytes show increased oxidative stress and reduced lactate secretion, as well as compromised neuronal supportive function, as evidenced by altering Ca2+ transients in healthy neurons. Our results reveal an important role for astrocytes in AD pathology and highlight the strength of iPSC-derived models for brain diseases

    The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons

    Get PDF
    The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered

    S-[F-18] THK-5117-PET and [C-11] PIB-PET Imaging in Idiopathic Normal Pressure Hydrocephalus in Relation to Confirmed Amyloid-beta Plaques and Tau in Brain Biopsies

    Get PDF
    BACKGROUND: Detection of pathological tau aggregates could facilitate clinical diagnosis of Alzheimer’s disease (AD) and monitor drug effects in clinical trials. S-[18F]THK-5117 could be a potential tracer to detect pathological tau deposits in brain. However, no previous study have correlated S-[18F]THK-5117 uptake in PET with brain biopsy verified tau pathology in vivo. OBJECTIVE: Here we aim to evaluate the association between cerebrospinal fluid (CSF) AD biomarkers, S-[18F]THK-5117, and [11C]PIB PET against tau and amyloid lesions in brain biopsy. METHODS: Fourteen patients with idiopathic normal pressure hydrocephalus (iNPH) with previous shunt surgery including right frontal cortical brain biopsy and CSF Aβ1 - 42, total tau, and P-tau181 measures, underwent brain MRI, [11C]PIB PET, and S-[18F]THK-5117 PET imaging. RESULTS: Seven patients had amyloid-β (Aβ, 4G8) plaques, two both Aβ and phosphorylated tau (Pτ, AT8) and one only Pτ in biopsy. As expected, increased brain biopsy Aβ was well associated with higher [11C]PIB uptake in PET. However, S-[18F]THK-5117 uptake did not show any statistically significant correlation with either brain biopsy Pτ or CSF P-tau181 or total tau. CONCLUSION: S-[18F]THK-5117 lacked clear association with neuropathologically verified tau pathology in brain biopsy probably, at least partially, due to off-target binding. Further studies with larger samples of patients with different tau tracers are urgently needed. The detection of simultaneous Aβ and tau pathology in iNPH is important since that may indicate poorer and especially shorter response for CSF shunt surgery compared with no pathology

    Serum Neurotrophin Profile in Systemic Sclerosis

    Get PDF
    International audienceBACKGROUND: Neurotrophins (NTs) are able to activate lymphocytes and fibroblasts; they can modulate angiogenesis and sympathic vascular function. Thus, they can be implicated in the three pathogenic processes of systemic sclerosis (SSc). The aims of this study are to determine blood levels of Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT-3) in SSc and to correlate them with clinical and biological data.METHODS: Serum samples were obtained from 55 SSc patients and 32 control subjects to measure NTs levels by ELISA and to determine their relationships with SSc profiles. FINDINGS: Serum NGF levels were higher in SSc patients (288.26 ± 170.34 pg/mL) than in control subjects (170.34 ± 50.8 pg/mL, p<0.001) and correlated with gammaglobulins levels and the presence of both anti-cardiolipin and anti-Scl-70 antibodies (p<0.05). In contrast, BDNF levels were lower in SSc patients than in controls (1121.9 ± 158.1 vs 1372.9 ± 190.9 pg/mL, p<0.0001), especially in pulmonary arterial hypertension and diffuse SSc as compared to limited forms (all p<0.05). NT-3 levels were similar in SSc and in the control group (2657.2 ± 2296 vs 2959.3 ± 2555 pg/mL, NS). BDNF levels correlated negatively with increased NGF levels in the SSc group (and not in controls). CONCLUSION: Low BDNF serum levels were not previously documented in SSc, particularly in the diffuse SSc subset and in patients with pulmonary hypertension or anti-Scl-70 antibodies. The negative correlation between NGF and BDNF levels observed in SSc and not in healthy controls could be implicated in sympathic vascular dysfunction in SSc

    Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats

    Get PDF
    BACKGROUND: There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. METHODS: Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. RESULTS: Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. CONCLUSIONS: Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
    • …
    corecore