23 research outputs found

    Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene

    Get PDF
    The polypurine/polypyrimidine (pPu/pPy) tract of the human vascular endothelial growth factor (VEGF) gene is proposed to be structurally dynamic and to have potential to adopt non-B DNA structures. In the present study, we further provide evidence for the existence of the G-quadruplex structure within this tract both in vitro and in vivo using the dimethyl sulfate (DMS) footprinting technique and nucleolin as a structural probe specifically recognizing G-quadruplex structures. We observed that the overall reactivity of the guanine residues within this tract toward DMS was significantly reduced compared with other guanine residues of the flanking regions in both in vitro and in vivo footprinting experiments. We also demonstrated that nucleolin, which is known to bind to G-quadruplex structures, is able to bind specifically to the G-rich sequence of this region in negatively supercoiled DNA. Our chromatin immunoprecipitation analysis further revealed binding of nucleolin to the promoter region of the VEGF gene in vivo. Taken together, our results are in agreement with our hypothesis that secondary DNA structures, such as G-quadruplexes, can be formed in supercoiled duplex DNA and DNA in chromatin in vivo under physiological conditions similar to those formed in single-stranded DNA templates

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore