103 research outputs found

    Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Get PDF
    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the''Guard-Hypothesis,'' R proteins (the ``guards'') can sense modification of target molecules in the host (the ``guardees'') by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the ``guardee-effector'' interface for pathogen recognition, natural selection acts on the ``guard-guardee'' interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen

    The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids

    Get PDF
    ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pK(a) of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids

    Resilience to Disturbance Despite Limited Dispersal and Self-Recruitment in Tropical Barrel Sponges: Implications for Conservation and Management

    Get PDF
    While estimates of connectivity are important for effective management, few such estimates are available for reef invertebrates other than for corals. Barrel sponges are one of the largest and most conspicuous members of the coral reef fauna across the Indo-Pacific and given their large size, longevity and ability to process large volumes of water, they have a major role in reef functioning. Here we used a panel of microsatellite markers to characterise the genetic structure of two barrel sponge species, Xestospongia testudinaria and a currently undescribed Xestospongia species. We sampled across seven populations in the Wakatobi Marine National Park, SE Sulawesi (Indonesia) spanning a spatial scale of approximately 2 to 70 km, and present the first estimates of demographic connectivity for coral reef sponges. Genetic analyses showed high levels of genetic differentiation between all populations for both species, but contrasting patterns of genetic structuring for the two species. Autocorrelation analyses showed the likely dispersal distances of both species to be in the order of 60 and 140 m for Xestopongia sp. and Xestospongia testudinaria, respectively, which was supported by assignment tests that showed high levels of self-recruitment (>80%). We also found consistently high inbreeding coefficients across all populations for both species. Our study highlights the potential susceptibility of barrel sponges to environmental perturbations because they are generally long-lived, slow growing, have small population sizes and are likely to be reliant on self-recruitment. Surprisingly, despite these features we actually found the highest abundance of both barrel sponge species (although they were generally smaller) at a site that has been severely impacted by humans over the last fifty years. This suggests that barrel sponges exhibit environmental adaptation to declining environmental quality and has important implications for the management and conservation of these important reef species. © 2014 Bell et al

    From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata

    Get PDF
    Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring

    GABA Receptors and the Pharmacology of Sleep

    Get PDF
    Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2ÎČÎł2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αÎČÎŽ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life

    Advancing schizophrenia drug discovery : optimizing rodent models to bridge the translational gap

    Get PDF
    Although our knowledge of the pathophysiology of schizophrenia has increased, treatments for this devastating illness remain inadequate. Here, we critically assess rodent models and behavioural end points used in schizophrenia drug discovery and discuss why these have not led to improved treatments. We provide a perspective on how new models, based on recent advances in the understanding of the genetics and neural circuitry underlying schizophrenia, can bridge the translational gap and lead to the development of more effective drugs. We conclude that previous serendipitous approaches should be replaced with rational strategies for drug discovery in integrated preclinical and clinical programmes. Validation of drug targets in disease-based models that are integrated with translationally relevant end point assessments will reduce the current attrition rate in schizophrenia drug discovery and ultimately lead to therapies that tackle the disease process

    Roles for retrotransposon insertions in human disease

    Get PDF
    • 

    corecore