3,854 research outputs found

    Dynamic splinting for knee flexion contracture following total knee arthroplasty: a case report

    Get PDF
    Total Knee Arthroplasty operations are increasing in frequency, and knee flexion contracture is a common pathology, both pre-existing and post-operative. A 61-year-old male presented with knee flexion contracture following a total knee arthroplasty. Physical therapy alone did not fully reduce the contracture and dynamic splinting was then prescribed for daily low-load, prolonged-duration stretch. After 28 physical therapy sessions, the active range of motion improved from -20° to -12° (stiff knee still lacking full extension), and after eight additional weeks with nightly wear of dynamic splint, the patient regained full knee extension, (active extension improved from -12° to 0°)

    RNA helicase EIF4A1-mediated translation is essential for the GC response

    Get PDF
    EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.</p

    RNA helicase EIF4A1-mediated translation is essential for the GC response

    Get PDF
    EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.</p

    Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    Get PDF
    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base

    Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Get PDF
    BACKGROUND: Proteinase-activated receptors (PARs; PAR(1–4)) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR(4), a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR(4 )stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. METHODS: EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). RESULTS: Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR(4 )agonist peptide (AYPGKF-NH(2), 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR(4 )stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR(4)-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR(4)-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR(4)-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR(4 )stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. CONCLUSION: PAR(4 )stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation

    Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich Ataxia

    Get PDF
    Copyright © 2014 Anjomani Virmouni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background - Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). Methodology/Principal Findings - We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. Conclusions/Significance - Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.European Union, Ataxia UK and FARA

    Improving the normalization of complex interventions: measure development based on normalization process theory (NoMAD): study protocol

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Understanding implementation processes is key to ensuring that complex interventions in healthcare are taken up in practice and thus maximize intended benefits for service provision and (ultimately) care to patients. Normalization Process Theory (NPT) provides a framework for understanding how a new intervention becomes part of normal practice. This study aims to develop and validate simple generic tools derived from NPT, to be used to improve the implementation of complex healthcare interventions.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Objectives&lt;/b&gt; The objectives of this study are to: develop a set of NPT-based measures and formatively evaluate their use for identifying implementation problems and monitoring progress; conduct preliminary evaluation of these measures across a range of interventions and contexts, and identify factors that affect this process; explore the utility of these measures for predicting outcomes; and develop an online users’ manual for the measures.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; A combination of qualitative (workshops, item development, user feedback, cognitive interviews) and quantitative (survey) methods will be used to develop NPT measures, and test the utility of the measures in six healthcare intervention settings.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Discussion&lt;/b&gt; The measures developed in the study will be available for use by those involved in planning, implementing, and evaluating complex interventions in healthcare and have the potential to enhance the chances of their implementation, leading to sustained changes in working practices
    corecore