240 research outputs found

    The Role of TLR4 in the Paclitaxel Effects on Neuronal Growth In Vitro

    Get PDF
    Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode. © 2013 Ustinova et al

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    Dinâmica populacional de Bemisia tabaci biótipo B em tomate monocultivo e consorciado com coentro sob cultivo orgânico e convencional.

    Get PDF
    A mosca-branca Bemisia tabaci Biótipo B (Hemiptera: Aleyrodidae), é um herbívoro de difícil controle devido à alta plasticidade genotípica da espécie. No tomateiro pode causar danos severos principalmente pela transmissão de diversas viroses. O manejo do sistema de produção e o consórcio de culturas podem ter um efeito direto nas populações desse herbívoro, sem que seja necessária a aplicação de inseticidas. Avaliou-se a influência dos sistemas de produção orgânico e convencional e o consórcio tomate-coentro na dinâmica populacional da mosca-branca no campo experimental da Embrapa Hortaliças, de maio a setembro/06. O monitoramento dos adultos da mosca-branca e de seus inimigos naturais foi realizado utilizando-se armadilhas adesivas amarelas fixadas nas bordas e no interior das parcelas experimentais e a amostragem de ninfas foi realizada por observação direta das folhas de tomate no campo. Embora as populações ao redor dos diferentes tratamentos fossem equivalentes, a abundância de adultos de mosca-branca foi significativamente menor nas parcelas de tomate consorciado com coentro, tanto no sistema convencional como orgânico. Apenas o consórcio tomatecoentro em sistema orgânico apresentou redução significativa na quantidade de ninfas por planta em relação aos demais tratamentos. Os inimigos naturais foram significativamente mais abundantes em sistema orgânico e foi verificada uma correlação negativa da abundância dos inimigos naturais e a quantidade de ninfas por planta. A associação tomate-coentro e o manejo orgânico do agroecossistema favoreceram ao controle biológico natural da mosca-branca

    Colloids as Mobile Substrates for the Implantation and Integration of Differentiated Neurons into the Mammalian Brain

    Get PDF
    Neuronal degeneration and the deterioration of neuronal communication lie at the origin of many neuronal disorders, and there have been major efforts to develop cell replacement therapies for treating such diseases. One challenge, however, is that differentiated cells are challenging to transplant due to their sensitivity both to being uprooted from their cell culture growth support and to shear forces inherent in the implantation process. Here, we describe an approach to address these problems. We demonstrate that rat hippocampal neurons can be grown on colloidal particles or beads, matured and even transfected in vitro, and subsequently transplanted while adhered to the beads into the young adult rat hippocampus. The transplanted cells have a 76% cell survival rate one week post-surgery. At this time, most transplanted neurons have left their beads and elaborated long processes, similar to the host neurons. Additionally, the transplanted cells distribute uniformly across the host hippocampus. Expression of a fluorescent protein and the light-gated glutamate receptor in the transplanted neurons enabled them to be driven to fire by remote optical control. At 1-2 weeks after transplantation, calcium imaging of host brain slice shows that optical excitation of the transplanted neurons elicits activity in nearby host neurons, indicating the formation of functional transplant-host synaptic connections. After 6 months, the transplanted cell survival and overall cell distribution remained unchanged, suggesting that cells are functionally integrated. This approach, which could be extended to other cell classes such as neural stem cells and other regions of the brain, offers promising prospects for neuronal circuit repair via transplantation of in vitro differentiated, genetically engineered neurons

    Cisplatin and Doxorubicin Induce Distinct Mechanisms of Ovarian Follicle Loss; Imatinib Provides Selective Protection Only against Cisplatin

    Get PDF
    Chemotherapy treatment in premenopausal women has been linked to ovarian follicle loss and premature ovarian failure; the exact mechanism by which this occurs is uncertain. Here, two commonly used chemotherapeutic agents (cisplatin and doxorubicin) were added to a mouse ovary culture system, to compare the sequence of events that leads to germ cell loss. The ability of imatinib mesylate to protect the ovary against cisplatin or doxorubicin-induced ovarian damage was also examined.Newborn mouse ovaries were cultured for a total of six days, exposed to a chemotherapeutic agent on the second day: this allowed for the examination of the earliest stages of follicle development. Cleaved PARP and TUNEL were used to assess apoptosis following drug treatment. Imatinib was added to cultures with cisplatin and doxorubicin to determine any protective effect.Histological analysis of ovaries treated with cisplatin showed oocyte-specific damage; in comparison doxorubicin preferentially caused damage to the granulosa cells. Cleaved PARP expression significantly increased for cisplatin (16 fold, p<0.001) and doxorubicin (3 fold, p<0.01). TUNEL staining gave little evidence of primordial follicle damage with either drug. Imatinib had a significant protective effect against cisplatin-induced follicle damage (p<0.01) but not against doxorubicin treatment.Cisplatin and doxorubicin both induced ovarian damage, but in a markedly different pattern, with imatinib protecting the ovary against damage by cisplatin but not doxorubicin. Any treatment designed to block the effects of chemotherapeutic agents on the ovary may need to be specific to the drug(s) the patient is exposed to

    Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields

    Get PDF
    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached

    Perspectives on supporting fathers affected by postnatal depression and a history of violence

    Get PDF
    Intimate partner violence in the perinatal period is a significant problem that remains underscreened, underdiagnosed and undertreated. The establishment of evidence-based guidelines to enable health visitors to identify couples experiencing violence and offer appropriate support has been hampered by the complex interplay between maternal and paternal mental health problems and violence. This study explored the experiences of UK fathers who voluntarily engaged with services designed to eliminate their ideation to violence. The findings indicate that the tendency to violence is increased by stresses associated with the transition to parenthood. Men felt pressured by concerns for their partner's mental health, changes in the relationship, sleep disturbances and the burden of infant care they assumed when the mother was unable to cope. Health visitors are ideally placed to assess for factors linked to the emergence of violence and put in place interventions to minimise occurrence

    Intra- and Inter-clade Cross-reactivity by HIV-1 Gag Specific T-Cells Reveals Exclusive and Commonly Targeted Regions: Implications for Current Vaccine Trials

    Get PDF
    The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities
    corecore