208 research outputs found

    Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia

    Get PDF
    Background: Stenotrophomonas maltophilia is a plant growth-promoter. This bacterium is also implicated in human diseases. Thus, after the use of this bacterium in agriculture, the safety of the final products has to be verified. Due to the ubiquitous presence of S. maltophilia in soil, in this study a massive contamination was simulated to evaluate the growth and safety of Raphanus sativus L.. Results: Different inoculums and soil treatment conditions were tested. Soils were analysed weekly and the radishes at harvest for their microbial loads and presence/persistence of S. maltophilia LMG 6606. The concentration of the bacterium added in the different trials decreased during the first week, but increased thereafter and determined a significant increase of growth parameters of radishes. Conclusions: The addition of S. maltophilia LMG 6606 to non-autoclaved soil enhanced the productivity of radishes. The bacterium did not internalize in the hypocotyls, but colonized the external surface ensuring the safety of the products. Thus, a sanitizing bath of hypocotyls before consumption is necessary

    The 3-Hydroxy-2-Butanone Pathway Is Required for Pectobacterium carotovorum Pathogenesis

    Get PDF
    Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the Îą-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH

    Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides

    Get PDF
    Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule–one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases

    Variation of Basal EROD Activities in Ten Passerine Bird Species – Relationships with Diet and Migration Status

    Get PDF
    Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species

    An Ancient Duplication of Exon 5 in the Snap25 Gene Is Required for Complex Neuronal Development/Function

    Get PDF
    Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes

    Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases

    Get PDF
    Grapevine is one of the most important economic crops yielding berries, wine products as well as derivates. However, due to the large array of pathogens inducing diseases on this plant, considerable amounts of pesticides—with possible negative impact on the environment and health—have been used and are currently used in viticulture. To avoid negative impacts of such products and to ensure product quality, a substantial fraction of pesticides needs to be replaced in the near future. One solution can be related to the use of beneficial bacteria inhabiting the rhizo- and/or the endosphere of plants. These biocontrol bacteria and their secondary metabolites can reduce directly or indirectly pathogen diseases by affecting pathogen performance by antibiosis, competition for niches and nutrients, interference with pathogen signaling or by stimulation of host plant defenses. Due to the large demand for biocontrol of grapevine diseases, such biopesticides, their modes of actions and putative consequences of their uses need to be described. Moreover, the current knowledge on new strains from the rhizo- and endosphere and their metabolites that can be used on grapevine plants to counteract pathogen attack needs to be discussed. This is in particular with regard to the control of root rot, grey mould, trunk diseases, powdery and downy mildews, pierce’s disease, grapevine yellows as well as crown gall. Future prospects on specific beneficial microbes and their secondary metabolites that can be used as elicitors of plant defenses and/or as biocontrol agents with potential use in a more sustainable viticulture will be further discussed

    Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes

    Get PDF
    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the “International Year of pulses”. Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes
    • …
    corecore