633 research outputs found
Yeast immobilization systems for second-generation ethanol production: actual trends and future perspectives
Yeast immobilization with low-cost carrier materials is a suitable strategy to optimize the fermentation of lignocellulosic hydrolysates for the production of second-generation (2G) ethanol. It is defined as the physical confinement of intact cells to a certain region of space (the carrier) with the preservation of their biological activity. This technological approach facilitates promising strategies for second-generation bioethanol production due to the enhancement of the fermentation performance that is expected to be achieved. Using immobilized cells, the resistance to inhibitors contained in the hydrolysates and the co-utilization of sugars are improved, along with facilitating separation operations and the reuse of yeast in new production cycles. Until now, the most common immobilization technology used calcium alginate as a yeast carrier but other supports such as biochar or multispecies biofilm membranes have emerged as interesting alternatives. This review compiles updated information about cell carriers and yeast-cell requirements for immobilization, and the benefits and drawbacks of different immobilization systems for second-generation bioethanol production are investigated and compared. © 2021 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.publishedVersio
A Physically-based, Subgrid Parametrization for the Production and Maintenance of Mixed-phase Clouds in a General Circulation Model
A physically based method for parametrizing the role of subgrid scale turbulence in the production and maintenance of supercooled liquid water and mixed-phase clouds is presented. The approach used is to simplify the dynamics of supersaturation fluctuations to a stochastic differential equation that can be solved analytically, giving increments to the prognostic liquid cloud fraction and liquid water content fields in a General Circulation Model (GCM). Elsewhere, it has been demonstrated that the approach captures the properties of decameter-resolution Large Eddy Simulations of a turbulent mixed-phase environment. In this paper it is shown that it can be implemented in a GCM and the effects that this has on Southern Ocean biases and on Arctic stratus are investigated
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions
Prostatic Arterial Supply: Anatomic and Imaging Findings Relevant for Selective Arterial Embolization
PURPOSE: To describe the anatomy and imaging findings of the prostatic arteries (PAs) on multirow-detector pelvic computed tomographic (CT) angiography and digital subtraction angiography (DSA) before embolization for symptomatic benign prostatic hyperplasia (BPH).
MATERIALS AND METHODS: In a retrospective study from May 2010 to June 2011, 75 men (150 pelvic sides) underwent pelvic CT angiography and selective pelvic DSA before PA embolization for BPH. Each pelvic side was evaluated regarding the number of independent PAs and their origin, trajectory, termination, and anastomoses with adjacent arteries.
RESULTS: A total of 57% of pelvic sides (n = 86) had only one PA, and 43% (n = 64) had two independent PAs identified (mean PA diameter, 1.6 mm ± 0.3). PAs originated from the internal pudendal artery in 34.1% of pelvic sides (n = 73), from a common trunk with the superior vesical artery in 20.1% (n = 43), from the anterior common gluteal-pudendal trunk in 17.8% (n = 38), from the obturator artery in 12.6% (n = 27), and from a common trunk with rectal branches in 8.4% (n = 18). In 57% of pelvic sides (n = 86), anastomoses to adjacent arteries were documented. There were 30 pelvic sides (20%) with accessory pudendal arteries in close relationship with the PAs. No correlations were found between PA diameter and patient age, prostate volume, or prostate-specific antigen values on multivariate analysis with logistic regression.
CONCLUSIONS: PAs have highly variable origins between the left and right sides and between patients, and most frequently arise from the internal pudendal artery
Idiopathic Pulmonary Fibrosis in the Era of Antifibrotic Therapy: Searching for New Opportunities Grounded in Evidence
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease that up to now has been associated with a poor prognosis. However, the results of the INPULSIS and ASCEND trials and the approval of nintedanib and pirfenidone have marked the beginning of a new era for IPF patients. Questions remain, however. Should these drugs be used earlier? What effect will they have on more severe disease? Will their effects last beyond the trial period? This manuscript is the outcome of a multidisciplinary meeting between pulmonology, radiology, and pathology clinicians on the use of antifibrotic agents in IPF. In our opinion, the existing data show that pirfenidone and nintedanib slow functional decline in early stages of disease. These drugs also appear to result in therapeutic benefits when administered to patients with advanced disease at diagnosis and maintain effective over time. The data also suggest that continuing antifibrotic therapy after disease progression may confer benefits, but more evidence is needed. Early diagnosis and treatment are crucial for reducing functional decline, slowing disease progression, and improving quality of life.info:eu-repo/semantics/publishedVersio
Cloud-microphysical factors affecting simulations of deep convection during the presummer rainy-season in southern China
The sensitivity of subtropical deep convection to the parameterization of cloud microphysics is elucidated through high‐resolution modeling of extreme presummer rainfall over southern China. An ensemble of physics configuration experiments is used to identify several drivers of model errors in comparison to radar observations from the South China Monsoon Rainfall Experiment (SCMREX) and remotely sensed estimates of cloud, precipitation, and radiation from satellites in the A‐train constellation. The benefits of increasing the number of prognostic variables in the microphysics scheme is assessed, relative to the effects of the parameterization of cloud microphysical properties and cloud fraction diagnosis. By matching individual parameterizations between the microphysical configurations, it is shown that a small subset of the parameterization changes can reproduce most of the dependence of model performance on physics configuration. In particular, biases that are due to the low‐level clouds and rain are strongly influenced by cloud fraction diagnosis and raindrop size distribution, whereas variations in the effects of high clouds are strongly influenced by differences in the parameterization of ice crystal sedimentation. Hence, for the case studied here, these parameterizations give more insight into the causes of variability in model performance than does the number of model prognostics per se
Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease
OBJECTIVE: Congenital heart disease (CHD) is the most frequent birth defect worldwide. The number of adult patients with CHD, now referred to as ACHD, is increasing with improved surgical and treatment interventions. However the mechanisms whereby ACHD predisposes patients to heart dysfunction are still unclear. ACHD is strongly associated with metabolic syndrome, but how ACHD interacts with poor modern lifestyle choices and other comorbidities, such as hypertension, obesity, and diabetes, is mostly unknown. METHODS: We used a newly characterized mouse genetic model of ACHD to investigate the consequences and the mechanisms associated with combined obesity and ACHD predisposition. Metformin intervention was used to further evaluate potential therapeutic amelioration of cardiac dysfunction in this model. RESULTS: ACHD mice placed under metabolic stress (high fat diet) displayed decreased left ventricular ejection fraction. Comprehensive physiological, biochemical, and molecular analysis showed that ACHD hearts exhibited early changes in energy metabolism with increased glucose dependence as main cardiac energy source. These changes preceded cardiac dysfunction mediated by exposure to high fat diet and were associated with increased disease severity. Restoration of metabolic balance by metformin administration prevented the development of heart dysfunction in ACHD predisposed mice. CONCLUSIONS: This study reveals that early metabolic impairment reinforces heart dysfunction in ACHD predisposed individuals and diet or pharmacological interventions can be used to modulate heart function and attenuate heart failure. Our study suggests that interactions between genetic and metabolic disturbances ultimately lead to the clinical presentation of heart failure in patients with ACHD. Early manipulation of energy metabolism may be an important avenue for intervention in ACHD patients to prevent or delay onset of heart failure and secondary comorbidities. These interactions raise the prospect for a translational reassessment of ACHD presentation in the clinic
A large community outbreak of waterborne giardiasis- delayed detection in a non-endemic urban area
BACKGROUND: Giardia is not endemic in Norway, and more than 90% of reported cases acquire the infection abroad. In late October 2004, an increase in laboratory confirmed cases of giardiasis was reported in the city of Bergen. An investigation was started to determine the source and extent of the outbreak in order to implement control measures. METHODS: Cases were identified through the laboratory conducting giardia diagnostics in the area. All laboratory-confirmed cases were mapped based on address of residence, and attack rates and relative risks were calculated for each water supply zone. A case control study was conducted among people living in the central area of Bergen using age- and sex matched controls randomly selected from the population register. RESULTS: The outbreak investigation showed that the outbreak started in late August and peaked in early October. A total of 1300 laboratory-confirmed cases were reported. Data from the Norwegian Prescription Database gave an estimate of 2500 cases treated for giardiasis probably linked to the outbreak. There was a predominance of women aged 20–29 years, with few children or elderly. The risk of infection for persons receiving water from the water supply serving Bergen city centre was significantly higher than for those receiving water from other supplies. Leaking sewage pipes combined with insufficient water treatment was the likely cause of the outbreak. CONCLUSION: Late detection contributed to the large public health impact of this outbreak. Passive surveillance of laboratory-confirmed cases is not sufficient for timely detection of outbreaks with non-endemic infections
Halophyte–Endophyte Interactions: Linking Microbiome Community Distribution and Functionality to Salinity
Many plants are unable to adapt to rapid environmental changes (e.g., salinity, drought, or limited nutrients) and may acquire assistance from microbes that have the capacity to increase tolerance of host-plants in stress conditions. By having the right microbes, the plants are more resilient! Such microbes include endophytes that inhabit inner tissues of the plant without causing symptoms of disease in their host. However, this plant–endophytic association exists only when chemical equilibrium is maintained between both, therefore making this mutualistic interaction even more unique. Therefore it is interesting to decode the endophytic community composition in halophytes specifically in the most salt-tolerant halophyte species Salicornia europaea, and further determine the factors that could affect this association. Moreover, understanding the endophytes potential plant growth-promoting activities in association with host (S. europaea) and non-host plant (non-halophytes) are the focus of this chapter
- …