2,753 research outputs found

    Trace element homogeneity from micron- to atomic scale: Implication for the suitability of the zircon GJ-1 as a trace element reference material

    Get PDF
    The quality of a chemical reference material relies on the fact that the composition of the material is homogeneous across all scales. A series of different techniques have been used to evaluate the trace element homogeneity of the GJ-1 reference zircon from the micron- to atomic scale. Cathodoluminescence imaging was conducted along with quantitative crystallographic orientation analysis and trace element analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The nanometre-scale homogeneity was evaluated by analysing five mineral tips using atom probe tomography, which provides atomic scale three dimensional chemical reconstructions with unprecedented spatial resolution. Results show that the GJ-1 reference zircon is homogeneous at all scales, both structurally and chemically. Crystallographic orientation data confirms that this gem quality zircon has no detectable internal crystallographic orientation changes such as crystal-plastic deformation features or cracks. No mineral inclusions were found. Atom probe tomography shows that there is a lack of any chemical clustering or other modes of spatially defined elemental accumulation or depletion for the most abundant trace elements such as Y, Yb and Hf. This finding is supported by LA-ICPMS data revealing homogeneity within the analytical precision. Trace elements of significant abundance include P, Yb, Y, U and Hf, with contents of 30 ± 6, 65 ± 2, 238 ± 5, 284 ± 14 and 6681 ± 57 ppm, respectively. Hence, the GJ-1 zircon used as a reference zircon for UPb and Hf-isotopic studies is also a suitable zircon reference material for trace element analyses

    Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems

    Get PDF
    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests

    Impact of metabolic comorbidity on the association between body mass index and heatlh-related quality of life: a Scotland-wide cross-sectional study of 5,608 participants

    Get PDF
    <p/>Background: The prevalence of obesity is rising in Scotland and globally. Overall, obesity is associated with increased morbidity, mortality and reduced health-related quality of life. Studies suggest that "healthy obesity" (obesity without metabolic comorbidity) may not be associated with morbidity or mortality. Its impact on health-related quality of life is unknown. <p/>Methods: We extracted data from the Scottish Health Survey on self-reported health-related quality of life, body mass index (BMI), demographic information and comorbidity. SF-12 responses were converted into an overall health utility score. Linear regression analyses were used to explore the association between BMI and health utility, stratified by the presence or absence of metabolic comorbidity (diabetes, hypertension, hypercholesterolemia or cardiovascular disease), and adjusted for potential confounders (age, sex and deprivation quintile). <p/>Results: Of the 5,608 individuals, 3,744 (66.8%) were either overweight or obese and 921 (16.4%) had metabolic comorbidity. There was an inverted U-shaped relationship whereby health utility was highest among overweight individuals and fell with increasing BMI. There was a significant interaction with metabolic comorbidity (p = 0.007). Individuals with metabolic comorbidty had lower utility scores and a steeper decline in utility with increasing BMI (morbidly obese, adjusted coefficient: -0.064, 95% CI -0.115, -0.012, p = 0.015 for metabolic comorbidity versus -0.042, 95% CI -0.067, -0.018, p = 0.001 for no metabolic comorbidity). <p/>Conclusions: The adverse impact of obesity on health-related quality of life is greater among individuals with metabolic comorbidity. However, increased BMI is associated with reduced health-related quality of life even in the absence of metabolic comorbidity, casting doubt on the notion of "healthy obesity"

    Health-related quality of life following a clinical weight loss intervention among overweight and obese adults: intervention and 24 month follow-up effects

    Get PDF
    BACKGROUND: Despite a growing literature on the efficacy of behavioral weight loss interventions, we still know relatively little about the long terms effects they have on HRQL. Therefore, we conducted a study to investigate the immediate post-intervention (6 months) and long-term (12 and 24 months) effects of clinically based weight management programs on HRQL. METHODS: We conducted a randomized clinical trial in which all participants completed a 6 month clinical weight loss program and were randomized into two 6-month extended care groups. Participants then returned at 12 and 24 months for follow-up assessments. A total of 144 individuals (78% women, M age = 50.2 (9.2) yrs, M BMI = 32.5 (3.8) kg/m(2)) completed the 6 month intervention and 104 returned at 24 months. Primary outcomes of weight and HRQL using the SF-36 were analyzed using multivariate repeated measures analyses. RESULTS: There was complete data on 91 participants through the 24 months of the study. At baseline the participants scored lower than U.S. age-specific population norms for bodily pain, vitality, and mental health. At the completion of the 6 month clinical intervention there were increases in the physical and mental composite measures as well as physical functioning, general health, vitality, and mental health subscales of the SF-36. Despite some weight regain, the improvements in the mental composite scale as well as the physical functioning, vitality, and mental health subscales were maintained at 24 months. There were no significant main effects or interactions by extended care treatment group or weight loss group (whether or not they maintained 5% loss at 24 months). CONCLUSION: A clinical weight management program focused on behavior change was successful in improving several factors of HRQL at the completion of the program and many of those improvements were maintained at 24 months. Maintaining a significant weight loss (> 5%) was not necessary to have and maintain improvements in HRQL

    Magnetic Field Evolution in Accreting White Dwarfs

    Get PDF
    We discuss the evolution of the magnetic field of an accreting white dwarf. We first show that the timescale for ohmic decay in the liquid interior is 8 to 12 billion years for a dipole field, and 4 to 6 billion years for a quadrupole field. We then compare the timescales for ohmic diffusion and accretion at different depths in the star, and for a simplified field structure and spherical accretion, calculate the time-dependent evolution of the global magnetic field at different accretion rates. In this paper, we neglect mass loss by classical nova explosions and assume the white dwarf mass increases with time. In this case, the field structure in the outer layers of the white dwarf is significantly modified for accretion rates above the critical rate (1-5) x 10^(-10) solar masses per year. We consider the implications of our results for observed systems. We propose that accretion-induced magnetic field changes are the missing evolutionary link between AM Her systems and intermediate polars. The shorter ohmic decay time for accreting white dwarfs provides a partial explanation of the lack of accreting systems with 10^9 G fields. In rapidly accreting systems such as supersoft X-ray sources, amplification of internal fields by compression may be important for Type Ia supernova ignition and explosion. Finally, spreading matter in the polar cap may induce complexity in the surface magnetic field, and explain why the more strongly accreting pole in AM Her systems has a weaker field. We conclude with speculations about the field evolution when classical nova explosions cause the white dwarf mass to decrease with time.Comment: To appear in MNRAS (15 pages, 10 figures); minor revision

    Guidelines on clinical presentation and management of non-dystrophic myotonias

    Get PDF
    The non‐dystrophic myotonias (NDMs) are rare muscle hyperexcitability disorders caused by gain‐of‐function mutations in the SCN4A gene or loss‐of‐function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography (EMG), and genetic confirmation. In the absence of genetic confirmation, the diagnosis is supported by detailed electrophysiological testing, exclusion of other related disorders, and analysis of a variant of uncertain significance (VUS) if present. Symptomatic treatment with a sodium channel blocker, such as mexiletine, is usually the first step in management, as well as educating patients about potential anesthetic complications

    Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder

    Get PDF
    Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    PESCADOR, a web-based tool to assist text-mining of biointeractions extracted from PubMed queries

    Get PDF
    BACKGROUND: Biological function is greatly dependent on the interactions of proteins with other proteins and genes. Abstracts from the biomedical literature stored in the NCBI's PubMed database can be used for the derivation of interactions between genes and proteins by identifying the co-occurrences of their terms. Often, the amount of interactions obtained through such an approach is large and may mix processes occurring in different contexts. Current tools do not allow studying these data with a focus on concepts of relevance to a user, for example, interactions related to a disease or to a biological mechanism such as protein aggregation. RESULTS: To help the concept-oriented exploration of such data we developed PESCADOR, a web tool that extracts a network of interactions from a set of PubMed abstracts given by a user, and allows filtering the interaction network according to user-defined concepts. We illustrate its use in exploring protein aggregation in neurodegenerative disease and in the expansion of pathways associated to colon cancer. CONCLUSIONS: PESCADOR is a platform independent web resource available at: http://cbdm.mdc-berlin.de/tools/pescador
    corecore