80 research outputs found

    Ecosystem restoration strengthens pollination network resilience and function.

    Get PDF
    Land degradation results in declining biodiversity and the disruption of ecosystem functioning worldwide, particularly in the tropics. Vegetation restoration is a common tool used to mitigate these impacts and increasingly aims to restore ecosystem functions rather than species diversity. However, evidence from community experiments on the effect of restoration practices on ecosystem functions is scarce. Pollination is an important ecosystem function and the global decline in pollinators attenuates the resistance of natural areas and agro-environments to disturbances. Thus, the ability of pollination functions to resist or recover from disturbance (that is, the functional resilience) may be critical for ensuring a successful restoration process. Here we report the use of a community field experiment to investigate the effects of vegetation restoration, specifically the removal of exotic shrubs, on pollination. We analyse 64 plant-pollinator networks and the reproductive performance of the ten most abundant plant species across four restored and four unrestored, disturbed mountaintop communities. Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity. Interactions in restored networks were more generalized than in unrestored networks, indicating a higher functional redundancy in restored communities. Shifts in interaction patterns had direct and positive effects on pollination, especially on the relative and total fruit production of native plants. Pollinator limitation was prevalent at unrestored sites only, where the proportion of flowers producing fruit increased with pollinator visitation, approaching the higher levels seen in restored plant communities. Our results show that vegetation restoration can improve pollination, suggesting that the degradation of ecosystem functions is at least partially reversible. The degree of recovery may depend on the state of degradation before restoration intervention and the proximity to pollinator source populations in the surrounding landscape. We demonstrate that network structure is a suitable indicator for pollination quality, highlighting the usefulness of interaction networks in environmental management

    The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks

    Get PDF
    Plant-pollinator mutualistic networks are asymmetric in their interactions: specialist plants are pollinated by generalist animals, while generalist plants are pollinated by a broad involving specialists and generalists. It has been suggested that this asymmetric ---or disassortative--- assemblage could play an important role in determining the equal susceptibility of specialist and generalist plants under habitat destruction. At the core of the argument lies the observation that specialist plants, otherwise candidates to extinction, could cope with the disruption thanks to their interaction with generalist pollinators. We present a theoretical framework that supports this thesis. We analyze a dynamical model of a system of mutualistic plants and pollinators, subject to the destruction of their habitat. We analyze and compare two families of interaction topologies, ranging from highly assortative to highly disassortative ones, as well as real pollination networks. We found that several features observed in natural systems are predicted by the mathematical model. First, there is a tendency to increase the asymmetry of the network as a result of the extinctions. Second, an entropy measure of the differential susceptibility to extinction of specialist and generalist species show that they tend to balance when the network is disassortative. Finally, the disappearance of links in the network, as a result of extinctions, shows that specialist plants preserve more connections than the corresponding plants in an assortative system, enabling them to resist the disruption.Comment: 14 pages, 7 figure

    Effect of invader removal: pollinators stay but some native plants miss their new friend

    Get PDF
    Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pescaprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.This work is financed by FEDER funds through the COMPETE Program and by Portuguese Foundation for Science and Technology (FCT) funds in the ambit of the project PTDC/ BIA-BIC/110824/2009, by CRUP Acc¾o˜es Integradas Luso- Espanholas 2010 with the project E10/10, by MCI-Programa de Internacionalizacio®n de la I ? D (PT2009-0068) and by the Spanish DGICYT (CGL2009-10466), FEDER funds from the European Union, and the Xunta de Galicia (INCITE09- 3103009PR). FCT also supported the work of S. Castro (FCT/ BPD/41200/2007) and J. Costa (CB/C05/2009/209; PTDC/ BIA-BIC/110824/2009). The work of V. Ferrero was supported by the Fundacio®n Ramo®n Areces

    Ranking species in mutualistic networks

    Get PDF
    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic “nested” structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm –similar in spirit to Google's PageRank but with a built-in non-linearity– here we propose a method which –by exploiting their nested architecture– allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made

    Pollination networks along the sea-inland gradient reveal landscape patterns of keystone plant species

    Get PDF
    Linking the functional role of plants and pollinators in pollination networks to ecosystem functioning and resistance to perturbations can represent a valuable knowledge to implement sound conservation and monitoring programs. The aim of this study was to assess the resistance of pollination networks in coastal dune systems and to test whether pollination interactions have an explicit spatial configuration and whether this affect network resistance. To this aim, we placed six permanent 10 m-wide belt transects. Within each transect we placed five plots of 2 m x 2 m, in order to catch the different plant communities along the dune sequence. We monitored pollination interactions between plants and pollinators every 15 days during the overall flowering season. The resulting networks of pollination interactions showed a relatively low degree of resistance. However, they had a clear spatial configuration, with plant species differently contributing to the resistance of pollination networks occurring non-randomly from the seashore inland. Our results evidenced that beside contributing to the creation and maintenance of dune ridges, thereby protecting inland communities from environmental disturbance, plant species of drift line and shifting dune communities have also a crucial function in conferring resistance to coastal dune pollination networks

    Ecological plasticity governs ecosystem services in multilayer networks

    Get PDF
    Agriculture is under pressure to achieve sustainable development goals for biodiversity and ecosystem services. Services in agro-ecosystems are typically driven by key species, and changes in the community composition and species abundance can have multifaceted effects. Assessment of individual services overlooks co-variance between different, but related, services coupled by a common group of species. This partial view ignores how effects propagate through an ecosystem. We conduct an analysis of 374 agricultural multilayer networks of two related services of weed seed regulation and gastropod mollusc predation delivered by carabid beetles. We found that weed seed regulation increased with the herbivore predation interaction frequency, computed from the network of trophic links between carabids and weed seeds in the herbivore layer. Weed seed regulation and herbivore interaction frequencies declined as the interaction frequencies between carabids and molluscs in the carnivore layer increased. This suggests that carabids can switch to gastropod predation with community change, and that link turnover rewires the herbivore and carnivore network layers affecting seed regulation. Our study reveals that ecosystem services are governed by ecological plasticity in structurally complex, multi-layer networks. Sustainable management therefore needs to go beyond the autecological approaches to ecosystem services that predominate, particularly in agriculture

    Rapid loss of flight in the Aldabra white-throated rail

    Get PDF
    Flight loss has evolved independently in numerous island bird lineages worldwide, and particularly in rails (Rallidae). The Aldabra white-throated rail (Dryolimnas [cuvieri] aldabranus) is the last surviving flightless bird in the western Indian Ocean, and the only living flightless subspecies within Dryolimnas cuvieri, which is otherwise volant across its extant range. Such a difference in flight capacity among populations of a single species is unusual, and could be due to rapid evolution of flight loss, or greater evolutionary divergence than can readily be detected by traditional taxonomic approaches. Here we used genetic and morphological analyses to investigate evolutionary trajectories of living and extinct Dryolimnas cuvieri subspecies. Our data places D. [c.] aldabranus among the most rapid documented avian flight loss cases (within an estimated maximum of 80,000–130,000 years). However, the unusual intraspecific variability in flight capacity within D. cuvieri is best explained by levels of genetic divergence, which exceed those documented between other volant taxa versus flightless close relatives, all of which have full species status. Our results also support consideration of Dryolimnas [cuvieri] aldabranus as sufficiently evolutionary distinct from D. c. cuvieri to warrant management as an evolutionary significant unit. Trait variability among closely related lineages should be considered when assessing conservation status, particularly for traits known to influence vulnerability to extinction (e.g. flightlessness)
    • 

    corecore