113 research outputs found

    Evolutionary fitness as a function of pubertal age in 22 subsistence-based traditional societies

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>The age of puberty has fallen over the past 130 years in industrialized, western countries, and this fall is widely referred to as the secular trend for earlier puberty. The current study was undertaken to test two evolutionary theories: (a) the reproductive system maximizes the number of offspring in response to positive environmental cues in terms of energy balance, and (b) early puberty is a trade-off response for high mortality rate and reduced resource availability.</p> <p>Methods</p> <p>Using a sample of 22 natural-fertility societies of mostly tropical foragers, horticulturalists, and pastoralists from Africa, South America, Australia, and Southeastern Asia, this study compares indices of adolescence growth and menarche with those of fertility fitness in these non-industrial, traditional societies.</p> <p>Results</p> <p>The average age at menarche correlated with the first reproduction, but did not correlate with the total fertility rate TFR or reproductive fitness. The age at menarche correlated negatively with their average adult body mass, and the average adult body weight positively correlated with reproductive fitness. Survivorship did not correlate with the age at menarche or age indices of the adolescent growth spurt. The population density correlated positively with the age at first reproduction, but not with menarche age, TFR, or reproductive fitness.</p> <p>Conclusions</p> <p>Based on our analyses, we reject the working hypotheses that reproductive fitness is enhanced in societies with early puberty or that early menarche is an adaptive response to greater mortality risk. Whereas body mass is a measure of resources is tightly associated with fitness, the age of menarche is not.</p

    Modulation in voluntary neural drive in relation to muscle soreness

    Get PDF
    The aim of this study was to investigate whether (1) spinal modulation would change after non-exhausting eccentric exercise of the plantar flexor muscles that produced muscle soreness and (2) central modulation of the motor command would be linked to the development of muscle soreness. Ten healthy subjects volunteered to perform a single bout of backward downhill walking exercise (duration 30 min, velocity 1 ms−1, negative grade −25%, load 12% of body weight). Neuromuscular test sessions [H-reflex, M-wave, maximal voluntary torque (MVT)] were performed before, immediately after, as well as 1–3 days after the exercise bout. Immediately after exercise there was a −15% decrease in MVT of the plantar flexors partly attributable to an alteration in contractile properties (−23% in electrically evoked mechanical twitch). However, MVT failed to recover before the third day whereas the contractile properties had significantly recovered within the first day. This delayed recovery of MVT was likely related to a decrement in voluntary muscle drive. The decrease in voluntary activation occurred in the absence of any variation in spinal modulation estimated from the H-reflex. Our findings suggest the development of a supraspinal modulation perhaps linked to the presence of muscle soreness

    Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic

    Get PDF
    Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean

    Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs.</p> <p>Results</p> <p>A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today.</p> <p>Conclusions</p> <p>The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme proliferation of non-coding nucleotides which is likely to be the result of initial expansion of genomes/gene copy number to gain adaptive potential, followed by a shift to a life-style in a highly specific niche (e.g. symbiosis). This transition results in redundancy of genes and gene families, leading to an increase in junk DNA and eventually to gene loss. A few orthologs can be correlated with specific phenotypes in cyanobacteria, such as filament formation and symbiotic competence; these constitute exciting exploratory targets.</p

    Psychological responses to the proximity of climate change

    Get PDF
    A frequent suggestion to increase individuals’ willingness to take action on climate change and to support relevant policies is to highlight its proximal consequences. However, previous studies that have tested this proximising approach have not revealed the expected positive effects on individual action and support for addressing climate change. We present three lines of psychological reasoning that provide compelling arguments as to why highlighting proximal impacts of climate change might not be as effective a way to increase individual mitigation and adaptation efforts as is often assumed. Our contextualisation of the proximising approach within established psychological research suggests that, depending on the particular theoretical perspective one takes to this issue, and on specific individual characteristics suggested by these perspectives, proximising can bring about the intended positive effects, can have no (visible) effect, or can even backfire. Thus, the effects of proximising are much more complex than is commonly assumed. Revealing this complexity contributes to a refined theoretical understanding of the role psychological distance plays in the context of climate change and opens up further avenues for future research and for interventions

    Contribution of Microbe-Mediated Processes in Nitrogen Cycle to Attain Environmental Equilibrium

    Get PDF
    Nitrogen (N), the most important element, is required by all living organisms for the synthesis of complex organic molecules like amino acids, proteins, lipids etc. Nitrogen cycle is considered to be the most complex yet arguably important cycle next to carbon cycle. Nitrogen cycle includes oxic and anoxic reactions like organic N mineralization, ammonia assimilation, nitrification denitrification, anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), comammox, codenitrification etc. Nitrogen cycling is one of the most crucial processes required for the recycling of essential chemical requirements on the planet. Soil microorganisms not only improve N-cycle balance but also pave the way for sustainable agricultural practices, leading to improved soil properties and crop productivity as most plants are opportunistic in the uptake of soluble or available forms of N from soil. Microbial N transformations are influenced by plants to improve their nutrition and vice versa. Diverse microorganisms, versatile metabolic activities, and varied biotic and abiotic conditions may result in the shift in the equilibrium state of different N-cycling processes. This chapter is an overview of the mechanisms and genes involved in the diverse microorganisms associated in the operation of nitrogen cycle and the roles of such microorganisms in different agroecosystems
    corecore