8 research outputs found

    Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa)

    Get PDF
    [EN] Contacts across the Strait of Gibraltar in the Pleistocene have been studied in different research papers, which have demonstrated that this apparent barrier has been permeable to human and fauna movements in both directions. Our study, based on the genetic analysis of wild boar (Sus scrofa), suggests that there has been contact between Africa and Europe through the Strait of Gibraltar in the Late Pleistocene (at least in the last 90,000 years), as shown by the partial analysis of mitochondrial DNA. Cytochrome b and the control region from North African wild boar indicate a close relationship with European wild boar, and even some specimens belong to a common haplotype in Europe. The analyses suggest the transformation of the wild boar phylogeography in North Africa by the emergence of a natural communication route in times when sea levels fell due to climatic changes, and possibly through human action, since contacts coincide with both the Last Glacial period and the increasing human dispersion via the strait.This study was supported by The Emirates Centre for Wildlife Propagation (Morocco). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Soria-Boix, C.; Donat-Torres, MP.; Urios, V. (2017). Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa). PLoS ONE. 12(7). doi:10.1371/journal.pone.0181929S12

    Integrated Operational Taxonomic Units (IOTUs) in Echolocating Bats: A Bridge between Molecular and Traditional Taxonomy

    Get PDF
    Background: Nowadays, molecular techniques are widespread tools for the identification of biological entities. However, until very few years ago, their application to taxonomy provoked intense debates between traditional and molecular taxonomists. To prevent every kind of disagreement, it is essential to standardize taxonomic definitions. Along these lines, we introduced the concept of Integrated Operational Taxonomic Unit (IOTU). IOTUs come from the concept of Operational Taxonomic Unit (OTU) and paralleled the Molecular Operational Taxonomic Unit (MOTU). The latter is largely used as a standard in many molecular-based works (even if not always explicitly formalized). However, while MOTUs are assigned solely on molecular variation criteria, IOTUs are identified from patterns of molecular variation that are supported by at least one more taxonomic characteristic. Methodology/Principal Findings: We tested the use of IOTUs on the widest DNA barcoding dataset of Italian echolocating bats species ever assembled (i.e. 31 species, 209 samples). We identified 31 molecular entities, 26 of which corresponded to the morphologically assigned species, two MOTUs and three IOTUs. Interestingly, we found three IOTUs in Myotis nattereri, one of which is a newly described lineage found only in central and southern Italy. In addition, we found a level of molecular variability within four vespertilionid species deserving further analyses. According to our scheme two of them (i.e. M. bechsteinii and Plecotus auritus) should be ranked as unconfirmed candidate species (UCS). Conclusions/Significance: From a systematic point of view, IOTUs are more informative than the general concept of OTUs and the more recent MOTUs. According to information content, IOTUs are closer to species, although it is important to underline that IOTUs are not species. Overall, the use of a more precise panel of taxonomic entities increases the clarity in the systematic field and has the potential to fill the gaps between modern and traditional taxonomy

    Data from: Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1)

    No full text
    Understanding of the movements of species at multiple scales is essential to appreciate patterns of population connectivity and in some cases, the potential for pathogen transmission. The serotine bat (Eptesicus serotinus) is a common and widely distributed species in Europe where it frequently harbours European bat lyssavirus type 1 (EBLV-1), a virus causing rabies and transmissible to humans. In the United Kingdom, it is rare, with a distribution restricted to south of the country and so far the virus has never been found there. We investigated the genetic structure and gene flow of E. serotinus across the England and continental Europe. Greater genetic structuring was found in England compared with continental Europe. Nuclear data suggest a single population on the continent, although further work with more intensive sampling is required to confirm this, while mitochondrial sequences indicate an east–west substructure. In contrast, three distinct populations were found in England using microsatellite markers, and mitochondrial diversity was very low. Evidence of nuclear admixture indicated strong male-mediated gene flow among populations. Differences in connectivity could contribute to the high viral prevalence on the continent in contrast with the United Kingdom. Although the English Channel was previously thought to restrict gene flow, our data indicate relatively frequent movement from the continent to England highlighting the potential for movement of EBLV-1 into the United Kingdom

    Two Mitochondrial Barcodes for one Biological Species: The Case of European Kuhl's Pipistrelles (Chiroptera)

    No full text
    The Kuhl's pipistrelle (Pipistrellus kuhlii) is a Western Palaearctic species of bat that exhibits several deeply divergent mitochondrial lineages across its range. These lineages could represent cryptic species or merely ancient polymorphism, but no nuclear markers have been studied so far to properly assess the taxonomic status of these lineages. We examined here two lineages occurring in Western Europe, and used both mitochondrial and nuclear markers to measure degrees of genetic isolation between bats carrying them. The sampling focused on an area of strict lineage sympatry in Switzerland but also included bats from further south, in North Africa. All individuals were barcoded for the COI gene to identify their mitochondrial lineages and five highly polymorphic microsatellite loci were used to cluster them according to their nuclear genotypes. Despite this low number of nuclear markers, all North African nuclear genotypes were grouped in a highly distinct subpopulation when compared with European samples sharing the same mitochondrial barcodes. The reverse situation prevailed in Switzerland where bats carrying distinct barcodes had similar nuclear genotypes. There was a weak east/west nuclear structure of populations, but this was independent of mitochondrial lineages as bats carrying either variant were completely admixed. Thus, the divergent mitochondrial barcodes present in Western Europe do not represent cryptic species, but are part of a single biological species. We argue that these distinct barcodes evolved in allopatry and came recently into secondary contact in an area of admixture north of the Alps. Historical records from this area and molecular dating support such a recent bipolar spatial expansion. These results also highlight the need for using appropriate markers before claiming the existence of cryptic species based on highly divergent barcodes
    corecore