5,134 research outputs found

    <sup>210</sup>Pb- <sup>226</sup>Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Get PDF
    Here we show the use of the 210Pb- 226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb- 226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr -1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr -1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr -1, with high uncertainty (∼1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that 210Pb- 226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals if Mn-Fe oxide deposits can be removed. Where metal oxides can be removed, large M. oculata and L. pertusa skeletons provide archives for studies of intermediate water masses with an up to annual time resolution and spanning over many decades. © 2012 Author(s)

    Object Manipulation in Virtual Reality Under Increasing Levels of Translational Gain

    Get PDF
    Room-scale Virtual Reality (VR) has become an affordable consumer reality, with applications ranging from entertainment to productivity. However, the limited physical space available for room-scale VR in the typical home or office environment poses a significant problem. To solve this, physical spaces can be extended by amplifying the mapping of physical to virtual movement (translational gain). Although amplified movement has been used since the earliest days of VR, little is known about how it influences reach-based interactions with virtual objects, now a standard feature of consumer VR. Consequently, this paper explores the picking and placing of virtual objects in VR for the first time, with translational gains of between 1x (a one-to-one mapping of a 3.5m*3.5m virtual space to the same sized physical space) and 3x (10.5m*10.5m virtual mapped to 3.5m*3.5m physical). Results show that reaching accuracy is maintained for up to 2x gain, however going beyond this diminishes accuracy and increases simulator sickness and perceived workload. We suggest gain levels of 1.5x to 1.75x can be utilized without compromising the usability of a VR task, significantly expanding the bounds of interactive room-scale VR

    A framework for Distributional Formal Semantics

    Get PDF
    Formal semantics and distributional semantics offer complementary strengths in capturing the meaning of natural language. As such, a considerable amount of research has sought to unify them, either by augmenting formal semantic systems with a distributional component, or by defining a formal system on top of distributed representations. Arriving at such a unified framework has, however, proven extremely challenging. One reason for this is that formal and distributional semantics operate on a fundamentally different `representational currency': formal semantics defines meaning in terms of models of the world, whereas distributional semantics defines meaning in terms of linguistic co-occurrence. Here, we pursue an alternative approach by deriving a vector space model that defines meaning in a distributed manner relative to formal models of the world. We will show that the resulting Distributional Formal Semantics offers probabilistic distributed representations that are also inherently compositional, and that naturally capture quantification and entailment. We moreover show that, when used as part of a neural network model, these representations allow for capturing incremental meaning construction and probabilistic inferencing. This framework thus lays the groundwork for an integrated distributional and formal approach to meaning

    Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.BACKGROUND: The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. METHOD: A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. RESULTS: Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US697millionwasspenttofundtheprojects,ofwhich35 697 million was spent to fund the projects, of which 35% ((US 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. CONCLUSION: The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research

    Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows

    Full text link
    The general Ericksen-Leslie system for the flow of nematic liquid crystals is reconsidered in the non-isothermal case aiming for thermodynamically consistent models. The non-isothermal model is then investigated analytically. A fairly complete dynamic theory is developed by analyzing these systems as quasilinear parabolic evolution equations in an LpLqL^p-L^q-setting. First, the existence of a unique, local strong solution is proved. It is then shown that this solution extends to a global strong solution provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the underlying state space. In these cases, the solution converges exponentially to an equilibrium in the natural state manifold

    Identification of women with an increased risk of developing radiation-induced breast cancer

    Get PDF
    In the previous issue of Breast Cancer Research, Broeks and collaborators present the results of a study suggesting that germline mutations in BRCA1, BRCA2, ATM or CHEK2 may double the risk of radiation-induced contralateral breast cancer following radiotherapy for a first breast cancer. The assocation appeared to be strongest among women who were below the age of 40 at the time of their first breast cancer and among women who developed their second cancer 5 years or more after the first. While there were a number of methodological issues that might limit the conclusions drawn from this paper, this is one of several recent studies suggesting that carriers of pathogenic alleles in DNA repair and damage recognition genes may have an increased risk of breast cancer following exposure to ionising radiation, even at low doses. This finding has important implications for the protection of breast cancer patients and their close relatives. If confirmed, mutation carriers may wish to consider alternatives to X-ray for diagnostic purposes. The need for tailored cancer treatment strategies in carriers should also be evaluated carefully

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    The effects of symmetry on the dynamics of antigenic variation

    Full text link
    In the studies of dynamics of pathogens and their interactions with a host immune system, an important role is played by the structure of antigenic variants associated with a pathogen. Using the example of a model of antigenic variation in malaria, we show how many of the observed dynamical regimes can be explained in terms of the symmetry of interactions between different antigenic variants. The results of this analysis are quite generic, and have wider implications for understanding the dynamics of immune escape of other parasites, as well as for the dynamics of multi-strain diseases.Comment: 21 pages, 4 figures; J. Math. Biol. (2012), Online Firs

    Damage to the prefrontal cortex increases utilitarian moral judgements

    Get PDF
    The psychological and neurobiological processes underlying moral judgement have been the focus of many recent empirical studies1–11. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion-related areas of the brain contribute to moral judgement. Here we show that six patients with focal bilateral damage to the ventromedial prefrontal cortex (VMPC), a brain region necessary for the normal generation of emotions and, in particular, social emotions12–14, produce an abnor- mally ‘utilitarian’ pattern of judgements on moral dilemmas that pit compelling considerations of aggregate welfare against highly emotionally aversive behaviours (for example, having to sacrifice one person’s life to save a number of other lives)7,8. In contrast, the VMPC patients’ judgements were normal in other classes of moral dilemmas. These findings indicate that, for a selective set of moral dilemmas, the VMPC is critical for normal judgements of right and wrong. The findings support a necessary role for emotion in the generation of those judgements

    Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Get PDF
    The rapid increase in power conversion efficiencies of photovoltaic devices incorporating lead halide perovskites has resulted in intense interest in the cause of their excellent properties. In the present paper, resonant ultrasound spectroscopy has been used to determine the elastic and anelastic properties of CH3NH3PbX3(where X=Cl, Br, or I) and CD3ND3PbI3 perovskites in the 5–380 K temperature range. This is coupled with differential scanning calorimetry, variable temperature neutron powder diffraction, and variable temperature photoluminescence studies to provide insights into the underlying processes and structural instabilities in the crystal structure. By comparing measurements on CH3NH3PbI3 with the deuterated equivalent, it has been possible to distinguish processes which are related to the hydrogen bonding between the methylammonium cation and the perovskite framework. We observe that replacing hydrogen with deuterium has a significant impact on both the elastic and photophysical properties, which shows that hydrogen bonding plays a crucial role in the material performance. Temperature-dependent photoluminescence studies show that the light emission is unaffected by the tetragonal-orthorhombic phase transition, but a blueshift in the emission and a steep increase in photoluminescence quantum yield are seen at temperatures below 150 K. Finally, observations of peaks in acoustic loss occurring in CH3NH3PbCl3 have revealed freezing processes in the vicinity of ∼150−170K, with activation energies in the range of 300 to 650 meV. These processes are attributed to freezing of the motion of methylammonium cations, and could explain the changes in photoluminescence seen in CH3NH3PbI3 at the same temperature. © 2018 American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1103/PhysRevMaterials.2.06540
    corecore