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ABSTRACT

Room-scale Virtual Reality (VR) has become an affordable
consumer reality, with applications ranging from entertain-
ment to productivity. However, the limited physical space
available for room-scale VR in the typical home or office en-
vironment poses a significant problem. To solve this, physi-
cal spaces can be extended by amplifying the mapping of
physical to virtual movement (translational gain). Although
amplified movement has been used since the earliest days of
VR, little is known about how it influences reach-based in-
teractions with virtual objects, now a standard feature of con-
sumer VR. Consequently, this paper explores the picking and
placing of virtual objects in VR for the first time, with trans-
lational gains of between 1x (a one-to-one mapping of a
3.5m*3.5m virtual space to the same sized physical space)
and 3x (10.5m*10.5m virtual mapped to 3.5m*3.5m physi-
cal). Results show that reaching accuracy is maintained for
up to 2x gain, however going beyond this diminishes accu-
racy and increases simulator sickness and perceived work-
load. We suggest gain levels of 1.5x to 1.75x can be utilized
without compromising the usability of a VR task, signifi-
cantly expanding the bounds of interactive room-scale VR.

Author Keywords
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ACM Classification Keywords
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INTRODUCTION

Virtual environments (VEs) provide limitless opportunities
constrained only by the creator’s imagination. In practice,
VEs that are intended to be explored by real-world walking
are severely limited by the physical space available in the
offices and homes [41] where commercial Virtual Reality
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(VR) headsets are being used. A 1:1 mapping of physical to
virtual movement requires VEs to fit the constraints of the
physical space available. This significantly limits the possi-
bilities for VE design and novel VR applications, reminds
users of the physical constraints of their setup and breaks im-
mersion when physical boundaries interrupt use.

A number of approaches have been used to overcome physi-
cal space constraints. Amplified movements allow users to
traverse larger virtual spaces by accelerating or amplifying
the mapping of physical to virtual movement [22,43,44,57].
This is commonly referred to as translational gain, a multi-
plier on the x/z position of the VR user, where walking 1m in
physical space can lead to walking 2m (2.0x gain) to 50m
(50.0x gain) in virtual space. This technique requires no
training and can enable larger singular virtual rooms whose
extents are fully reachable and spatially consistent, with
every point in VR mapped to a point in real-world space.

Translational gain has frequently been overlooked in favour
of both redirected walking and locomotion interfaces. Redi-
rected walking uses combinations of translational [21], rota-
tional [27] and curvature [28] gain alongside other perceptual
tricks to portray infinitely traversable virtual spaces. How-
ever, these techniques have significant limitations regarding
physical requirements (minimum 6m? [45] but realistically
up room-scale to 22m? [19]), and they cannot support single-
room virtual spaces where every visible corner is consist-
ently reachable and fully explorable. Virtual locomotion
techniques [54] such as teleportation, walking in-place and
flight also allow for infinite exploration, but they require
training, potentially increase simulator sickness [25] and un-
dermine the spatial understanding of the virtual space [58].
Omni-directional treadmills [12] allow for effortful physical
traversal whilst remaining stationary in reality, but require
costly additional hardware, and may restrain movement and
interaction.

Consequently, this paper examines how translational gain
can be applied to interactive room-scale VR for the first time.
Translational gain has the greatest potential to impact every-
day VR users across a range of physical environments. It
costs nothing, is trivial to apply, and allows for singular,
complex, fully explorable spaces (e.g. small shop, kitchen)
to be approximated within the limited physical bounds of a
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home or office. It requires no additional user training or in-
teraction. However, VR experiences are now typically highly
interactive. Grasping and manipulating virtual objects is sup-
ported by default in many consumer VR experiences, typi-
cally enacted via handheld controllers (such as those bundled
with the HTC Vive [20]) or optical hand tracking (e.g. Leap
Motion [30]). Given this, one key unknown issue, not ad-
dressed in earlier work, is how amplified movement impacts
interaction and manipulation of virtual objects: a fundamen-
tal part of interaction in VR. For example, does amplified
movement cause users to overshoot when reaching for ob-
jects, misjudge distances relative to their bodies, or collide
with virtual barriers? As off-the-shelf input techniques with
handheld controllers and positional tracking of VR head-sets
become the standard setup, new models of amplified move-
ment must be developed that take this whole-body interac-
tion into account.

In this paper, we examine two key questions about virtual
object interaction under varying levels of translational gain.
Firstly, to what extent does translational gain impair a user’s
ability to interact with, and manipulate, virtual objects. Sec-
ondly, what are the resultant maximal usable levels of trans-
lational gain that can be applied, given a virtual environment
that requires frequent object manipulations. We do so under
the constraint of providing a fully reachable, freely explora-
ble space where each point in the virtual space maps to a spe-
cific point in the real world, meaning no dynamic/variable
translational or rotational gain. In a study (n=20), we meas-
ured how precisely participants could reach for, pick up and
place virtual objects at varying positions and heights, and
walk routes around virtual obstacles, under varying levels of
translational gain. From this, we present new guidelines for
applying translational gain to both highly interactive VE’s,
and environments where object manipulation does not re-
quire stretching/reaching/bending.

RELATED RESEARCH

A range of methods has been developed to enable VR users
to traverse virtual environments larger than the physical
space available to them. Movement can be simulated from a
fixed position using virtual movement or by physically mov-
ing within a tracked space using redirected walking and
movement gain.

Virtual Movement

The current position and point of view (POV) of the user can
be instantaneously transported to another position in the VE
using controls such as buttons or pointers [54], but the sud-
den change in position can cause disorientation [5] and can
diminish sense of presence [6]. Virtual movement can also
be continuous like a flyover [50], where a joystick controls
continuous movement through a VE. These approaches are
fully supported in VR software development kits and are
used in many popular games. However, in all cases of virtual
movement, seeing movement without feeling physical move-
ment is a major cause of simulator sickness [25].

Previous work has explored ways of adding physicality to
virtual movement without actually walking. Tregillus et al.
[48] explored how head tilt could be used to navigate in a
VE. However, such approaches have notable problems re-
garding drift and the potential for increased simulator sick-
ness. Wilson et al. [55] compared walking-in-place and arm-
swinging-in-place with actually walking. Although walking-
in-place performed better than arm-swinging-in-place in
terms of spatial awareness, neither was a good as physically
walking [55]. Whilst walking-in-place can add more realism
and a sensation of physical activity, it still suffers from a sen-
sory mismatch, albeit to a lesser degree because of the ves-
tibular stimulation provided by the movement. Cirio et al.
[11] proposed a hybrid movement method which supported
physical walking within the physical boundaries of a room
but, once near the edges, the user could extend his/her hand
to initiate rate-based virtual traversal in the direction of
pointing, again potentially suffering from sensory mismatch.

Redirected Walking

Redirected walking utilizes imperceptible lateral shifts in the
visual scene that cause the user to walk in an arc while be-
lieving they are walking straight ahead (e.g., [18,36,43,44]).
This facilitates longer virtual walking routes than straight tra-
jectories, allowing users to walk through an effectively infi-
nite virtual space. Research has sought to measure how sen-
sitive users are to the subtle rotations (and occasionally
movement compressions [44]) that induce redirected walk-
ing. Steinicke et al. [42—44] found that users could be redi-
rected by up to 17-18° over a Sm walking distance without
being reliably aware, representing an arc with a 32m diame-
ter. If users are engaged in a secondary task (i.e., not focused
on detecting movement discrepancies), Hodgson ef al. [19]
found that they can be redirected along an arc of only 15.3m
diameter without becoming aware, and curvature and trans-
lational gain can be implemented concurrently without users
noticing [15]. In these large spaces, perceptual illusions
[8,47], change blindness [9] or visual distractors [10,39] can
be used to reduce a user’s awareness of manipulations. How-
ever, regular manipulation of the virtual scene may interfere
with tasks or cognitive processing, and redirection algo-
rithms may require knowledge of intended destinations. If it
is not necessary for the user to be unaware of any discrepan-
cies, arcs of only 6.6m diameter are feasible [44], but not for
free exploration.

The seminal redirected walking research (e.g., [42—44])
mapped physically curved paths to virtual straight paths to
test the illusion, but more recent work has looked at the tol-
erance for detection of curved physical paths, either simply
walking through a room [28], or in conjunction with touching
a wall surface [32,33]. The research suggests that there are
larger tolerances (i.e., lowered sensitivity) to variations in the
curvature of physical vs. virtual paths, compared to straight
physical vs. curved virtual paths, and curved walls can be
perceived as straight walls [32,33]. Langbehn ef al. [29] re-
duced the necessary physical space to 5x5m by utilising
curved paths, but this relied on users following preset paths.



Efforts have also gone into facilitating multiple users in re-
directed walking environments [2]. Azmandian et al. [1] re-
cently published a general-purpose ‘“Redirected Walking
Toolkit” to support development and deployment of redi-
rected walking setups. For a review of redirected walking
and other techniques see Vasylevska et al. [53].

There are significant limitations to using redirected walking,
principally its incompatibility with free exploration of the
virtual space coupled with the large physical spaces required.
Redirected walking steers the user away from physical walls,
steering which requires relatively straight walking paths and
often knowledge of an intended destination. It cannot fully
support a user who may need to make sudden or unpredicta-
ble movements in any direction throughout the space, with-
out resorting to re-orientation events which break immersion.
Also, it currently requires a space that can house a walking
arc with a diameter of at least ~7m [44], or 15m for less con-
strained exploration [19]. These dimensions are too large for
environments where consumer VR systems are used (the av-
erage UK living room is only 4.8m? [41]). It is also not yet
known how redirected walking may impact interaction in
VR.

Impossible Spaces

Rather than utilising continuous imperceptible shifts to the
position of the user in the VE, “impossible spaces” [47], or
simply ‘overlapping spaces’, utilise change blindness to alter
the physical layout of a space outside of the user’s field of
view (FOV). For example, a user sees a virtual room and,
after walking into it, the layout of the space behind them is
changed so that the door is in a new position, directing them
into more open space [46,51] or, upon leaving a room, the
user is redirected back to the same physical space where a
different virtual room is now shown [52]. Alternatively, an
entirely different room can be loaded behind the user, as an
extension of the room currently inhabited [47]. This can be
most readily experienced in the video game “Unseen Diplo-
macy” [49].

This approach has a benefit over redirected walking in that it
better supports free exploration of room-scale spaces, how-
ever, it is less successful at creating large virtual environ-
ments that can be freely explored, and it still relies on ma-
nipulating the position and layout of the virtual world, so it
must make assumptions about the user’s intention before al-
tering the VE. For example, a user may walk into a room past
a bookshelf; they then may want to turn around and pick up
a book but the software would need to determine if the user
wanted a newly-located exit, or to approach the shelf.

Translational Gain

An alternative method that combines free exploration with
smaller spaces, applies a simple gain factor to the physical
distance walked, amplifying the amount of virtual transla-
tional movement relative to physical movement. Applying a
translational gain of, for example, 2x, 10x or 100x to 1m of
physical walking results in the user seeing 2m, 10m or 100m
of movement in the VE [21]. The gain is generally applied

only to horizontal (x- and z-axes) movement, so that vertical
‘head-bob’ is not amplified, as this can cause nausea [21].

Research has shown that users are unlikely to detect gains of
up to 1.6x [43,44], meaning a physical space can be increased
by 60% without the user even being aware of a manipulation.
Gains of 2x are noticeable but not problematic [22,43,44],
and even large gains of up to 50x can be applied without in-
ducing sickness or negatively affecting spatial orientation
[43,44,57], with active engagement in a task reducing the sa-
lience of movement mismatch [19]. There is a suggestion
that people are more sensitive to accelerated forward/back-
ward movement than along other axes [22]. Zhang et al. [59]
showed no difference in the salience of acceleration between
a uniform gain and a dynamically ramped up gain. In con-
trast, Interrante et al. [21] suggested that a uniform gain can
cause greater sickness compared to a system called ‘seven
league boots” which amplifies motion along a single dimen-
sion, based on gaze direction and recent movement. How-
ever, this is not suitable for free exploration of a space, as
movement can be in any horizontal direction, not just for-
ward/backward, and gaze may change rapidly and conflict
with walking direction when engaged in virtual tasks.

Crucially, no research has looked at the influence of transla-
tional gain on a user’s ability to interact with or manipulate
objects in the VE. Virtual worlds are not just for looking at
or walking through: reaching for, picking up and placing ob-
jects are key aspects of interaction. Azmandian et al. [3] used
perspective shifts via rotational gain to allow a single haptic
object to be used as multiple building blocks. Users were led
to reach for (and place) the same physical block while feeling
they were picking/placing spatially distributed blocks. How-
ever, they were seated, and the technique required the system
to know in advance what object the user was going to pick
up and where it would be placed. Janeh et al. [23] recently
observed that walking biomechanics (gait) are altered under
varying conditions of visual flow (translational gain), so it
may be that reaching movements are also affected. Our re-
search addresses the limitations of prior work into transla-
tional gain by measuring how accurately users can walk up
to, reach for, and place objects, under varying levels of trans-
lational gain.

OBJECT MANIPULATION UNDER INCREASING
TRANSLATIONAL GAIN

A study was conducted to examine the impact of varying lev-
els of translational gain on a user’s ability to reach for and
grasp virtual objects. Physical interaction is important for re-
alism [7] and fundamental to creating virtual facsimiles of
real-world tasks that feature the same interactions in VR as
in reality. Thus, a concrete understanding of the impact of
translational gain on object manipulation was required for
translational gain to be successfully applied to general pur-
pose interactive VR. To examine this in a controlled manner,
we designed a task that included phases of both walking
around virtual obstacles and reaching for virtual objects at
varying heights and positions. In doing so, we incorporated



a range of common reaching movements, such as bend-
ing/crouching down, reaching to various heights, and stretch-
ing over a table.

Physical Space

We used an empty 3.5m*3.5m office space and applied sim-
ple gain levels to all horizontal (x- and z- axis) translational
movement: 1.0x (1-to-1 movement), 1.5x, 1.75%, 2.0x and
3.0x, resulting in square virtual spaces with a length and
breadth of 3.5m, 5.25m, 6.125m, 7m and 10.5m from the
same physical space. We used an HTC Vive [20] for tracking
the head and hands and providing the visual display. The ex-
periment took place in a 6m x Sm office in the School but we
obtained optimal tracking accuracy with the Vive using a
3.5m*3.5m space in the centre of the room. The cable for the
Vive ran down to the floor and across to the PC running the
software. An experimenter continually monitored partici-
pants so that they did not trip on the cable or lose their bal-
ance. Participants also held and manipulated the cable using
his/her non-dominant hand.

Virtual Environment

The VE (Figure 1) consisted of a warehouse with floor,
walls, ceiling lights and structural pillars. The experiment
made use of between 3.5m*3.5m (no translational gain) and
10.5m*10.5m (3.0x gain) in the centre of the 20m x 30m vir-
tual room, depending on the condition. Target arrays were
placed at each of the four edges of this central space, in either
a horizontal table configuration or a vertical wall configura-
tion (see Figure 2). Participants were instructed to walk to a
highlighted wall/table, pick up a highlighted target, then
walk to the opposite wall/table and place the target in the
highlighted position. They were instructed to stand directly
in front of the walls/tables when reaching.

Target Arrays

Each target was a red cube, measuring 5cm’® with an image
of a green arrow on the side facing the participant. This arrow
was used to indicate the orientation that the cube must be in
when placing it. Cubes were separated from each other by
lcm on all sides, values that were arrived at based on pilot
testing. To perform a grab/release, users would align a visual
attach point on the controller to the cube being targeted. This
attach point was a transparent version of the same cube (see
Figure 3). The target size and separation balanced a need for
precise targeting (not too big) and robust target selection.
While the arrays contained many cubes, only 9 were used as
targets to be picked up and placed down, to keep the total

Figure 1: Left: Virtual environment with 1.0x (no) gain.
Right: Virtual environment with 3.0x gain.

Figure 2: Left: Highlighted wall for next target. Right: Table.

task time to a reasonable length. Entirely randomising the
target location within the array could lead to unequal reach-
ing locations/actions across participants so we fixed the po-
sitions of the 9 targets (see Walls and Tables below).

We employed two target array configurations, walls and ta-
bles, for several reasons: 1) they closely approximate object
placements on shelves and tables; 2) walls allow us to see the
effects of reaching vertically, and tables the effects of reach-
ing horizontally; 3) as only horizontal translation is amplified
(for reasons of comfort), picking from a vertical array is po-
tentially less susceptible to movement gain, as the participant
can squat vertically, remaining still horizontally, then reach
for a target, all the while experiencing no amplification. In
the table configuration, reaching inherently involves hori-
zontal movement. The number of visible boxes in the array
varied between the walls and tables for practical reasons ex-
plained below, but both used the same number of targets.

Walls

Shelving (and cupboards) at home and in shopping environ-
ments are positioned from the floor up to above shoulder
height for easy access. To avoid unbalancing participants by
forcing them reach too high, the top row of the wall array
was positioned at shoulder height, measured and set per-par-
ticipant at the start of each experiment. The bottom row of
the array was approximately at shin height, to ensure a wide
reaching range. There were 19 rows x 7 columns in the wall
array, and the positions of the 9 target cubes were in columns
(from top left) 2, 4 and 6 on rows 2, 10 and 18. Using rows
10 and 18 allowed us to measure the effect on accuracy and
subjective reports of small and large downward-reaching
movements. The total width of the array was limited such
that those targets on the outer columns could be reached
without leaning or stepping. Only the dominant hand was
used for reaching, as requiring participants to reach across
their bodies would be uncomfortable and awkward.

Figure 3: Left: User reaching to select target cube, with inset

real-world environment. Right: Alignment cube.



Tables

As the tables were used to test horizontal reaching, the height
was set at hip-height, again measured per-participant. A
higher table would make distant reaching more awkward,
and a lower table would introduce vertical reaching. It was
not possible to reach as far as 19 rows on a table, and so we
limited the number to 13 (with row 1 nearest the participant):
a value arrived at from pilot testing. This required a large but
feasible (and not unbalancing) reaching movement. Each
row again consisted of 7 columns, and the 9 target cubes
were again placed in columns 2, 4 and 6, only this time on
rows 2, 7 and 12.

Obstacles

To add complexity to the walking part of the task, and to
measure the effect of amplified translation on movement,
waist-height virtual obstacles were placed in the space be-
tween walls/tables which the participant had to walk around.
These obstacles were placed so as to require a straight line, a
left-right zig-zag or a parabolic curve (see Figure 4). The po-
sitions of the curve and zig-zag obstacles were mirrored to
require an equal number of movements to the left and right.

Experimental Task

The experimental task required the participant to walk to one
wall/table, pick up a highlighted cube from the rack, turn
around and walk to the opposite wall/table and place the cube
in a designated place in the rack, walking a route to avoid the
virtual obstacles. Participants completed both a wall-only
and a table-only condition at each level of translation gain.
The Vive controller was not rendered in the virtual environ-
ment (nor was the hand), but the controller’s location was
indicated by a partially transparent red target cube, acting as
a guide where participants should match the position and ori-
entation of the transparent cube with the target cube.

Participants started each condition with their backs to the
‘north’ virtual wall, facing into the centre of the space. At
random, the cube rack on either the left or right wall (at 45°
angle) was visually highlighted (changed from grey to green)
and an arrow appeared in the middle of the room, pointing to
the highlighted rack (see Figure 2). This indicated that the
participant should walk to that rack (with no obstacle). When
they were within a radius of 1m of the rack in virtual space
one of the 9 target cubes was visually highlighted in blue.
The participant then reached for and picked up the cube using
the Vive controller, by matching the position of the transpar-
ent controller cube with the target cube and activating the
controller trigger button. The controller cube then changed
from transparent to opaque.

The participant then turned 180° and walked towards the op-
posite cube rack (now highlighted green), avoiding the ob-
stacles now placed on the floor. When within a 1m radius of
the opposite wall, one of the 9 target positions within the rack
was highlighted in blue, indicating the participant was to
place the held cube in that location, and in the same orienta-
tion (matching the green arrow), by positioning the cube us-
ing the controller and pressing the trigger button. Once done,

Figure 4: The three walking routes. Left: Straight. Middle:
Zig-zag. Right: Curve. Obstacles were scaled based on gain.

the participant again turned 180° to face into the virtual room
and the next trial began (either left or right side highlighted).
During each condition, each of the 9 target positions was
picked from, and placed into, three times in a random order.
The obstacles were each applied to one of the three trials of
each target, in a random order.

Movement Amplification Levels

We tested five levels of translational gain: 1.0x (1-to-1
movement), 1.5x, 1.75x, 2.0x and 3.0x, resulting in virtual
spaces with a length and breadth of 3.5m, 5.25m, 6.125m,
7m and 10.5m respectively. Research has shown that ampli-
fications up to 2x are only slightly noticeable when walking
[22,43,44], and we wanted to identify how similar amplifica-
tions affected reaching. While amplifications of 10x or even
50x have been studied before, they were done so only in the
context of movement, with no interaction. Pilot testing
showed such high levels made interaction extremely chal-
lenging.

Experimental Design

The experiment had a five (Translational Gain) x two (Array
Orientation) factor within-subjects design: all participants
completed one wall and one table condition under all levels
of translational gain, resulting in 10 conditions in total. The
order of Gain levels was counterbalanced across participants,
and the order of Orientations was counterbalanced across
Gain levels.

To minimise any cumulative effects of fatigue and nausea,
participation was split into two sessions separated by 3 or 4
days: the first session comprised of 6 conditions (3 Gain lev-
els x 2 Orientations), and the second session the remaining 4
conditions (2 Gains x 2 Orientations). Within each condition,
9 target locations were selected from 3 times, resulting in 27
trials. Twenty healthy participants (11 female, 9 male) took
part, aged 20 to 35 (mean 24.7), and were paid £20 upon
completing the second session. Participants were primarily
staff and students from the University, and were screened for
any physical or non-corrected visual impairment.

Measures

We collected objective task performance measures, subjec-
tive workload, comfort responses, and open-ended interview
responses about the experience as a whole.

Task Measures
e Time: Trial Duration (including both picking and placing and
walking to walls/tables) and Reaching Time (from arriving in
Im virtual proximity to target);



e Movement: Walking Velocity, Tortuosity (a measure of bend in
a line, in this case it is the mean of the degree of change of bear-
ing between successive points across the trajectory of the walk-
ing route in the x/z axes);

o Reaching precision: Target Selection Correctness (whether the
correct cube was picked up or placed), Target Selection Accu-
racy (the Euclidean distance between the centres of the target
and selected cube).

Subjective Responses
o Nausea: Simulator Sickness Questionnaire (SSQ) [24];
o Workload: NASA TLX [16];
e 7-point Likert scales, from “Strongly Disagree” (1) to “Strongly
Agree” (7): “My movement felt unusual”; ““I felt unstable while

99, ¢

walking”; “I felt unstable while reaching”.

RESULTS

For all results, a repeated measures ANOV A was performed.
Where data were non-parametric, an Aligned-Rank Trans-
form [56] was used to allow use of parametric methods. For
post hoc contrasts, the Ismeans [31] R package was used with
Tukey adjustment. Where Violin plots [17] are used, they
display a rotated kernel density plot on either side of a box
plot, allowing for density estimation, with notched box plots
denoting the 95% CI [26].

Reaching accuracy and task performance

Hereafter we will refer to both the target grab and target re-
lease phases as the same event: a target selection. If we ex-
amine target selection correctness, all conditions had mean
correctness of >90%, with no significant differences between
1.x up to 2.0x (see Table 1). However, there was a significant
difference between 3.0x Gain and the other levels, with mean
accuracy dropping to 90% (sd=12%) for Table and 85%
(sd=12%) for Wall.

Selection accuracy also significantly decreased for 3.0x Gain
compared to all other conditions, with the notable increase in
dispersal of selection points present in Figure 5. Target ori-
entation accuracy was not significantly affected by Gain, but
it was significantly affected by array orientation: Wall targets
were misaligned by an average of 30°.

Mean trial duration significantly increased with Gain for all
combinations except 1.75x-2.0x, taking ~12 seconds at 1.0x

versus ~16 seconds at 3.0x. Whilst this would appear a nota-
ble increase across what are like-for-like tasks, this increase
is largely accounted for when we consider a side-effect of

25¢F b
25 0 25 25 0 25
X offset (cm)

Depth (cm) - 1

-2.5 25

Figure 5. Scatterplot of controller attach point at target
grab/release, front-on for Wall, top-down for Table (mean-
ing both are effectively front-on relative to the target). The
spread increases with increasing gain.

Y offset (cm)
) )
a O O,

T—
o
($)]
x

Measure Gain factor Gain post hoc (p<0.05)

Orientation factor Gain x Orientation

Target correct-
ness

Selection accu-
racy
Orientation ac-
curacy

F(4,171)=5.74, p<0.01 {1.5x, 1.75x, 2.0x} - 3.0x

F(4,171)=7.55, p<0.01

F(4,171)=0.90, p=0.47 NA

Trial duration F(4,171)=62.91, p<0.01 All except 1.75x — 2.0x

1.0x - 1.5x
{1.5x, 1.75x%, 2.0x} - 3.0x

Reaching dura-

. F(4,171)=6.99, p<0.01

{1.0x, 1.5%, 1.75x%, 2.0x} - 3.0x;

F(1,171)=0.68, p=0.41 F(4,171)=2.23, p=0.07

F(1,171)=1.84, p=0.18 F(4,171)=0.057, p=0.99
F(1,171)=180.16, p<0.05 F(4,171)=1.15, p=0.34

F(1,171)=0.56, p=0.46 F(4,171)=0.95, p=0.44

F(1,171)=0.02, p=0.89 F(4,171)=2.17, p=0.08

Table 1. Quantitative performance measures: Target correctness, a binary measure of whether centre of the controller attach point
was within the volume of the target; Selection accuracy, the Euclidean distance between the controller attach point and the centre of
the target; Orientation accuracy, the minimum angle between the orientation of the controller attach point and the centre of the tar-
get; Trial duration, the time taken to walk to the first target, grab it, walk around obstacle, and then place it; Reaching duration, the
time taken to grab/place once within 1 metre of the table/wall. Significant differences are highlighted.



reaching for targets under translational gain: in the increased
gain conditions the effective position of the virtual target in
the real world varies based on the arm/reach length of the
user reaching for the target. If we consider a point in reality
1.75m away, this point would also be 1.75m away in VR at
1.0x gain. Given an arm reach of 0.5m, then the user would
have to walk 1.25m, to within a 0.5m proximity of the target,
to be able to reach out and touch it.

Now consider this scenario at 3.0x gain. The same point at
1.75m away in reality would be 5.25m away in VR. With an
arm reach of 0.5m, the user would have to walk 4.75m in VR
space to be able to reach out to the target, which would mean
walking 4.75/3.0x=1.58m, compared to 1.25m under 1.0x
gain. In effect, the user would have to walk further to reach
out and touch the target, even though if they were standing
at the 1.75m mark in reality, they would be standing on the
target under both 1.0x and 3.0x gain. This is because their
hand position is not accelerated in the way that their head
position is. Assuming a reach of 0.5m, this difference
amounts to a 26% increase on the effective distance in reach-
ing for the target at 3.0x gain versus 1.0x gain, explaining
most of the difference between the ~12s trial time at 1.0x and
the ~16s at 3.0x.

Consequently, utilizing measures of distance and time when
reaching for targets under translational gain is problematic.
However, there was a significant increase in the time taken
to select the target once within 1m virtually of the Table/Wall
between the 3.0x gain and the other levels (see Reaching du-
ration, Table 1), even though the user would have to move
less distance to touch the target. This is indicative of the po-
tential difficulties of reaching for targets in a smaller real-
world volume, with the real-world position of the target shift-
ing based on any additional head movement. This can be seen
in Figure 6, where the fixed position of the target evident in

Real World Y (meters)
o
[e]

1.0 15 20 2.51.0 15 20 25
Real World Z (meters)

Lowest (wall); Nearest (table) === Middle (table)

Target Position == Mmiddle (wall)
Highest (wall)

== Fyrthest (table)

Figure 6. Side-on view of reach trajectory in real-world space
when within 1m virtually of the target.

the 1.0x condition degrades significantly in the 3.0x condi-
tion, with the ballistic phase of the reach compacted into
smaller physical bounds.

Walking movement

Given the variance in distance to the target based on both
gain and user reach length, velocity was instead used to ex-
amine the effect of gain on real-world movement. Mean vir-
tual velocity increased significantly for all levels of gain
(F(4,266)=563.09, p<0.01, all contrasts p<0.05) and across
all obstacle types (F(2,266)=39.10, p<0.01, all contrasts
p<0.05), with no interactions, going from ~0.6m/s at 1.0x to
~1.3m/s at 3.0x. This was to be expected, with users moving
through the virtual world at an increased rate.

However, the magnitude of this increase in virtual velocity
was not proportional with the gain level. Indeed, there was
also a significant effect on real-world velocity by gain
(F(4,266)=101.79, p<0.01, all contrasts p<0.01 except 1.75x
— 2.0x) and obstacle type (F(2,266)= 40.80, p<0.01, all con-
trasts p<0.01) with no interactions. As can be seen in Figure
7, real-world velocity decreased by ~25% from approxi-
mately ~0.6m/s at 1.0x to ~0.45m/s at 3.0x. In effect, users
self-moderated their walking pace as gain increased and as
they navigated the winding paths of the curve and zig-zag
obstacles. This reinforces findings that suggest users perform
an unconscious gain compensation [37].

The steadiness of walking movement was also examined by
calculating the tortuosity of the participants’ movements on
the x/z axes (i.e. from above). Ignoring obstacle type (as each
obstacle has a different required path tortuosity), a signifi-
cant effect was found for gain (F(4,266)=20.66, p<0.01),
with contrasts indicating differences between 1.0x-1.75x,
{1.0x, 1.5x}-2.0x, and {1.0x, 1.5x, 1.75x, 2.0x}-3.0x. How-
ever, given the decrease in real-world walking velocity as
gain increased, we cannot accurately state whether this is in-
dicative of unsteady movement, or confounded to some un-
known degree by a change in step count resulting from the
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Figure 7. Real-world walking velocity whilst navigating ob-
stacles mid-trial.



change in velocity. For example, if step count increased, this
would lead to additional gait phase changes (i.e. increased
side-to-side head movement), which would be impair this
measure.

Subjective Responses

As can be seen in Table 2, there were significant main effects
of gain on both overall TLX workload (see Figure 8) and on
all the TLX subscales, with differences predominantly aris-
ing between {1.0x, 1.5x, 1.75x, 2.0x} and 3.0x. 3.0x gain ap-
pears to be the point at which performance decreases and
workload increases. With respect to the SSQ simulator sick-
ness score, again 3.0x marks a boundary upon which there is
a significant difference relative to all other conditions. How-
ever, the score is still comparatively low, with 3.0x gain hav-
ing a mean of ~21 compared to a mean of ~10 for 1.0x. This
is just past the threshold (18.8) that Kennedy ef al. [24] sug-
gested indicated a problematic level of sickness for a simu-
lator, with the means for all other conditions below this
threshold. Regarding the three Likert-type questions, again
there were repeated significant differences between 3.0x gain
and all other levels. For unstable walking and unstable reach-
ing there were also differences between the lower levels of
gain and 2.0x gain.

Interview Responses

Short, loosely guided interviews were conducted at the end
of the study asking about any particular difficulties or un-
pleasant aspects of the study, with interviews coded using
Initial Coding (participants’ statements were assigned emer-
gent codes over repeated cycles). These codes were grouped
using a thematic approach and reported based on frequency
and interest, with representative excerpts quoted.

Bending down to reach was problematic
It was noted by 11 participants that bending down to reach
for targets under translational gain, particularly in reference
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Figure 8. Overall NASA TLX workload score across different
levels of gain.

to the lowest Wall target, was problematic in terms of stabil-
ity:

P1: “Reaching down when it’s the walls, I felt really uncom-
fortable, really “blurgh”, really unstable. Especially when it
was too fast.”

P16: “In the (conditions) that felt more accelerated it was
sometimes uncomfortable to reach and pick things up that
were lower down. But not in the less accelerated ones.”

P19: “When I was reaching to grab something on the lower
shelf I felt like the whole thing was moving.

Three participants explicitly noted that they adapted how
they reached for the target by crouching rather than bending,
thus reducing the translational gain experienced by minimiz-
ing head movement throughout the reach:

P3: “Under higher acceleration, moving my head back and
forward felt very unusual, so after I realized that, I started
crouching down [rather than bending over].

P14: “It felt like it didn't quite match my physical motion and
um... when reaching down - absolutely uncomfortable. Be-
cause I literally had to sometime go into a squat in order to
stabilize myself.”

Measure Gain factor Gain post hoc (p<0.05) Type factor Gain x Type
TLX workload F(4,171)=14.62, p<0.01 {1.0x, 1.5x, 1.75x, 2.0x} - 3.0x; F(1,171)=17.12, p<0.01 F(4,171)=0.05, p=1
TLX effort F(4,171)=7.93, p<0.01 {1.0x, 1.5x, 1.75x, 2.0x} - 3.0x; F(1,171)=8.60, p<0.01 F(4,171)=0.09, p=0.99

TLX frustration

TLX mental demand
TLX physical demand
TLX performance

TLX temporal demand

SSQ simulator sickness
score

Unusual movement

Unstable whilst walking

Unstable whilst reaching

F(4,171)=8.51, p<0.01
F(4,171)=9.79, p<0.01
F(4,171)=3.93, p<0.01
F(4,171)=7.99, p<0.01
F(4,171)=3.67, p<0.01
F(4,171)=8.55, p<0.01
F(4,171)=15.51, p<0.01

F(4,171)=25.31, p<0.01

F(4,171)=20.34, p<0.01

1.0x - 2.0x;
{1.0x, 1.5x, 1.75x} - 3.0x;

{1.0x, 1.5x, 1.75x, 2.0x} - 3.0x;
1.0x - 3.0x
{1.0x, 1.5x, 1.75x} - 3.0x;

1.75x - 3.0x;

{1.0x, 1.5x, 1.75x, 2.0x} - 3.0x;

{1.0x, 1.5x} - 2.0x;

{1.0x, 1.5x, 1.75x, 2.0x} - 3.0x;
{1.0x, 1.5x, 1.75x} - 2.0x;
{1.0x, 1.5x, 1.75x, 2.0x} - 3.0x;
1.0x - 1.75x;

{1.0x, 1.5x} - 2.0x;

{1.0x, 1.5x, 1.75x, 2.0x} - 3.0x;

F(1,171)=3.99, p=0.047
F(1,171)=8.38, p<0.01
F(1,171)=26.01, p<0.01
F(1,171)=7.69, p<0.01
F(1,171)=1.01, p=0.32
F (1,171)=1.43, p=0.23
F(1,171)=0.60, p=0.44

F(1,171)=0.18, p=0.68

F(1,171)=1.71, p=0.19

F(4,171)=0.12, p=0.97
F(4,171)=0.65, p=0.63
F(4,171)=0.20, p=0.93
F(4,171)=0.74, p=0.56
F(4,171)=0.09, p=0.98
F(4,171)=0.45, p=0.77
F(4,171)=0.23, p=0.92

F(4,171)=0.63, p=0.64

F(4,171)=1.03, p=0.39

Table 2. Questionnaire responses for NASA TLX, Simulator Sickness Questionnaire, and unusual movement (""My movement in
the virtual environment felt unusual”, higher is worse), stability whilst walking ("I felt unstable while walking'') and stability
whilst reaching ("I felt unstable while reaching"). Significant differences are highlighted.



P20: “When you had the plane (wall) if you had to bend that
was the worst. I always had to find a stable stance from
which to operate. I never really bent down as I would nor-
mally to pick something up.'”

Inconsistent perception of space and gain

The translational gain conditions appeared to warp percep-
tion of the size of the physical space for 4 participants, to the
extent that the 1.0x gain condition felt smaller/slower than
reality, an observed phenomenon with 1:1 walking in VR
[4,14]:

P2: “The smaller environments felt a wee bit strange, it felt
like I was taking ¥ of the steps I was actually taking.”

P16: “I felt like the smaller ones were smaller than the ac-
tual room and the bigger ones were bigger than the actual
room - none felt like the actual size of the room.”

High gain affected stability
For 4 participants, high gain affected the steadiness in VR
whilst moving:

P13: “I just noticed the difference in the amount you moved

with each step. I guess that affected how stable the VR felt. If

it was further away, if you moved your head it was more jit-
tery - there was more extreme motion. When things were
closer it was a lot tighter and felt a lot nicer.”

DISCUSSION

This study set out to examine both the effect of translational
gain on reaching accuracy and the impact of object manipu-
lation on the perception and usability of translational gain.
Firstly, 3.0x gain was repeatedly shown to be statistically
less accurate, and exhibit significantly greater workload,
than the other tested levels. Considering target accuracy, up
to 2.0x gain is usable. It may be possible to go higher but we
do not know at what point accuracy degrades between 2.0x
and 3.0x gain. Whilst reaching behaviour is subtly different
between 1.0x and the increased gain conditions, this did not
impair task performance measurably. When we consider the
effect that repeated object manipulations had on the user ex-
perience of translational gain, we can begin to rule out any
levels of gain beyond 2.0x more categorically. Simulator
sickness scores indicated a hard cap at 2.0x, beyond which
an increased level of sickness was experienced. The TLX
scores also show that beyond 2x gain the workload increased
significantly.

The perception of movement instability questions were in-
line with research suggesting that 1.6x gain was the threshold
of imperceptibility, with movement at 2.0x being noted as
unusual compared to {1.0x, 1.5x}. Instability in movement
was noted for {1.0x, 1.5x, 1.75x} versus 2.0x, with signifi-
cant instability in reaching between 1.0x and 1.75x.

Accordingly, we begin to see there are many factors which
can inform what is the maximal level of translational gain
that can be accommodated. Given we are using a subset of
gain levels, we can state the range within which a measure
degrades. Based on the ranges in Table 3, we would suggest

Current usable Gain becomes

Measure maximum gain problematic at
Accuracy 2.0x 3.0x
Simulator sickness 2.0x 3.0x
Frustration 1.75x 2.0x
“Unusual” movement 1.75x 2.0x
Instability (movement) 1.75x 2.0x
Instability (reaching) 1.5x 1.75x

Table 3. Guidelines for applying translational gain. The true
“problematic” max will lie somewhere between the values in the
“usable” and “problematic” columns.

that translational gain of 1.5x would represent a safe value if
the VR simulation is to involve dynamic reaching and bend-
ing to interact with graspable objects. It is worth noting that
the task required continuous and repeated walking, reaching
and rotation actions from participants. Tasks which require
less frequent movements and adjustments may well allow
larger acceptable gains. For VR experiences with infrequent
object interactions and limited-to-no bending/reaching,
1.75x gain would be an acceptable level. Training and prac-
tice may also reduce the negative effects of larger gain levels,
as these values could be marginally increased, as the true
maximums remain somewhere between the safe and prob-
lematic points.

Future Research

Our results give a strong starting point for the choice of gain
level in a VE. However, different scenarios may need differ-
ent levels. Examining different virtual tasks with different
levels of interactivity would more concretely establish the
acceptable level of gain based on the type and frequency of
the virtual interactions the user is expected to perform. In
the case of translational gain, it would appear that as the ves-
tibular system is sensing the “correct” motion in terms of di-
rection and orientation, differences between the visual and
vestibular systems in terms of the magnitude of motion are
less problematic. As has been noted by VR use in-car [34]
however, visual perception of motion in VR currently brings
with it a number of caveats. For example, the field of view
of current consumer headsets is typically ~110° - in effect,
our visual system is receiving only a subset of the infor-
mation it could potentially process, with peripheral motion
cues almost entirely absent. Decreasing the field of view has
been noted to decrease simulator sickness in the case of vec-
tion [13]. Thus, conversely, it would be reasonable to hy-
pothesise that as the field of view of consumer VR HMDs
increases and provides our visual system with more infor-
mation, the perception of translational gain may vary.

Our perception of motion is dependent on a variety of visual
cues linked to perception of depth [40]. It would thus be rea-
sonable to hypothesize that different virtual environments
may elicit different effects. For example, consider a jungle
scene packed with foliage. The perception of the movement



of close foliage might result in different recommended levels
of gain. Given the variety of scenes that can be portrayed,
this presents a problematic factor to take into account, but
research has found that visual density does not strongly af-
fect sensitivity to rotational gain in redirected walking [38].
Further research using different VEs would establish if this
holds for translational gain too.

Attention should be paid to bending/reaching under transla-
tional gain. As our participant interviews emphasized, the
acts of bending over or stretching to reach for an object were
problematic because the participants’ feet are rooted to the
ground, but they still experience translational movement,
which we term the “sliding floors” effect. This is because the
translation is applied to the position of the user’s head (as it
is the VR HMD which is tracked). This also results in a mag-
nification of postural sway: as the user’s head moves left and
right, the visual magnitude of this movement will be in-
creased. Whilst filtering can be used to correct this [35], if
translation was applied to the user’s centre of gravity, or the
centre-point between the user’s feet, then this problem would
be diminished. This suggests alternative forms of tracking
would be needed. We have performed some initial experi-
mentation to this end, testing a “body-tracked” translational
gain implementation by tracking the position of an HTC
Vive controller attached to the small of the user’s back. How-
ever, there are significant tracking and ergonomic issues to
be overcome if such a solution is to be viable. With better
tracking, the upper bound of acceptable translational gain
could be increased.

Finally, there is the aspect of habituation to translational
gain. It could be expected that, given gradual small increases
in gain over time, users might overcome inaccuracy in reach-
ing and become hardened to symptoms of simulator sickness.
These increases could, for example, be based on duration of
exposure and duration since last exposure per user, meaning
that more frequent users might find the virtual boundaries of
their games and applications slowly increasing over time. In
such a scenario, the recommendations made in this paper
may simply represent starting points for exposure, rather
than end points of maximal gain. However, a means of as-
sessing the suitability of a given gain increase would need to
be devised and integrated into consumer VR experiences,
whilst the impact of longitudinal exposure to translational
gain is as-yet unknown.

Summary

Our results show that translational gain can now be applied
to highly interactive VR experiences. This paper was moti-
vated by our underlying aim of aiding people with Acquired
Brain Injury (ABI) to practice real-world tasks safely
through VR. To do so, we needed a general-purpose ap-
proach that would create the largest fully explorable/reacha-
ble interactive virtual room possible from a small physical
space, accommodating the physical limitations of the homes
and facilities these experiences might be deployed within.
We wanted to do this whilst retaining physical walking as the

means of locomotion, as opposed to other methods that re-
quire training and explicit user interactions (such as pointing
a controller to teleport), to ensure there was still a physical
cost to actions in VR, and to preserve spatial understanding.
Only by satisfying these constraints could we have the basis
for creating virtual facsimiles of real-world tasks and envi-
ronments that do not introduce additional confounds based
on the method of exploring the virtual space. We would sug-
gest that, given our guidelines, translational gain satisfies
these constraints.

We provide guidelines for the application of translational
gain to VR, as well as a code snippet that will allow for trans-
lational gain to be applied to any SteamVR scene whilst pre-
serving the play area bounds and scaling/moving objects ap-
propriately (see https://gist.github.com/mark-
meg/ff2215824cc503b40ee9800810753068). Translational
gain is not necessarily the best tool for every VE, but it is a
tool whose use should be considered alongside the state-of-
the-art in redirected walking, locomotion and omni-direc-
tional treadmills. It can provide immediate benefits to prac-
titioners in creating low-cost interactive virtual rooms that
are fully explorable and comparable in dimensions to living-
rooms, kitchens and shops, based on much smaller physical
room-scale spaces.

CONCLUSIONS

The physical space available for room-scale Virtual Reality
(VR) is limited by common home or office spaces. Utilising
translational gain, the size of fully explorable virtual envi-
ronments can be quickly and easily expanded with existing
hardware. For the first time, this research has shown how
these movement amplifications impact common object inter-
actions such as reaching and picking. This paper has ex-
plored how the picking and placing of virtual objects in VR
is affected by translational gains of up to 3.0x the physical
movement. We found that reaching accuracy is maintained
at up to 2x gain, however, going beyond this diminishes ac-
curacy and increases simulator sickness and perceived work-
load. We have provided guidelines regarding how transla-
tional gain can be utilized by practitioners without compro-
mising the VR user’s capability to interact with their virtual
surroundings.
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