246 research outputs found

    Book reviews

    Get PDF
    Click on the link to view

    Characterisation of the bacterial and fungal communities associated with different lesion sizes of Dark Spot Syndrome occurring in the Coral Stephanocoenia intersepta

    Get PDF
    The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS) afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi) associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H), those in advance of the lesion interface (apparently healthy AH), and three sizes of disease lesions (small, medium, and large) varied significantly (ANOSIM R = 0.052 p,0.001), apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237), Acinetobacter (KC190251), Parvularculaceae (KC19027), and Oscillatoria (KC190271). Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals’ symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name), the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in Black Band Disease, another widespread coral disease

    Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice

    Get PDF
    Handling can stimulate stress and anxiety in laboratory animals that negatively impacts welfare and introduces a confounding factor in many areas of research. Picking up mice by the tail is a major source of handling stress that results in strong aversion to the handler, while mice familiarised with being picked up in a tunnel or cupped on the open hand show low stress and anxiety, and actively seek interaction with their handlers. Here we investigate the duration and frequency of handling required for effective familiarisation with these non-aversive handling methods, and test whether this is sufficient to prevent aversion and anxiety when animals then experience immobilisation and a mild procedure (subcutaneous injection). Very brief handling (2 s) was sufficient to familiarise mice with tunnel handling, even when experienced only during cage cleaning. Brief but more frequent handling was needed for familiarisation with cup handling, while pick up by tail induced strong aversion even when handling was brief and infrequent. Experience of repeated immobilisation and subcutaneous injection did not reverse the positive effects of tunnel handling. Our findings demonstrate that replacing tail with tunnel handling during routine cage cleaning and procedures provides a major refinement with little if any cost for familiarisation

    Novel and de novo PKD1 mutations identified by multiple restriction fragment-single strand conformation polymorphism (MRF-SSCP)

    Get PDF
    BACKGROUND: We have previously developed a long RT-PCR method for selective amplification of full-length PKD1 transcripts (13.6 kb) and a long-range PCR for amplification in the reiterated region (18 kb) covering exons 14 and 34 of the PKD1 gene. These have provided us with an opportunity to study PKD1 mutations especially in its reiterated region which is difficult to examine. In this report, we have further developed the method of multiple restriction fragment-single strand conformation polymorphism (MRF-SSCP) for analysis of PKD1 mutations in the patients with autosomal dominant polycystic kidney disease (ADPKD). Novel and de novo PKD1 mutations are identified and reported. METHODS: Full-length PKD1 cDNA isolated from the patients with ADPKD was fractionated into nine overlapping segments by nested-PCR. Each segment was digested with sets of combined restriction endonucleases before the SSCP analysis. The fragments with aberrant migration were mapped, isolated, and sequenced. The presence of mutation was confirmed by the long-range genomic DNA amplification in the PKD1 region, sequencing, direct mutation detection, and segregation analysis in the affected family. RESULTS: Five PKD1 mutations identified are two frameshift mutations caused by two di-nucleotide (c. 5225_5226delAG and c.9451_9452delAT) deletions, a nonsense (Q1828X, c.5693C>T) mutation, a splicing defect attributable to 31 nucleotide deletion (g.33184_33214del31), and an in-frame deletion (L3287del, c.10070_10072delCTC). All mutations occurred within the reiterated region of the gene involving exons 15, 26, 15, 19 and 29, respectively. Three mutations (one frameshift, splicing defect, and in-frame deletion) are novel and two (one frameshift and nonsense) known. In addition, two mutations (nonsense and splicing defect) are possibly de novo. CONCLUSION: The MRF-SSCP method has been developed to analyze PCR products generated by the long RT-PCR and nested-PCR technique for screening PKD1 mutations in the full-length cDNA. Five mutations identified were all in the reiterated region of this gene, three of which were novel. The presence of de novo PKD1 mutations indicates that this gene is prone to mutations

    Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction

    Get PDF
    Abstract Background Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. Methods The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Results Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80 %. Conclusions Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the enhanced statistical power of split-plot designs, allowing many fewer animals to be used. More powerful designs can also increase the chances of replicable findings, and increase the ability of small-scale studies to yield significant results. Using mixed-strain housing for female C57BL/6, DBA/2 and BALB/c mice is therefore an effective, efficient way to promote both refinement and the reduction of animal-use in research

    The usability of recycled carbon fibres in short fibre thermoplastics: interfacial properties

    Get PDF
    The objective of this study was to investigate the feasibility of combining discontinuous recycled carbon fibres with polypropylene, to produce a low-cost, high specific stiffness material for high-volume applications. The inherent low affinity of carbon fibre and polypropylene motivated a detailed study of the surface characteristics of carbon fibre and interfacial behaviour between the two materials, using the microbond test. The effects of removing the sizing from the fibres, as well as introducing a maleic anhydride-grafted polypropylene coupling agent, were extensively investigated. Polypropylene was found to degrade when prepared under atmospheric conditions; therefore, it was necessary to form droplets under nitrogen. Removal of the sizing from the fibre using pyrolysis and solvolysis techniques altered the surface morphology of the fibre and increased the interfacial shear strength (IFSS) by 4 and 33 %, respectively. A more significant improvement in the fibre–matrix adhesion was achieved by adding a maleic anhydride coupling agent at 2 wt%, which increased the IFSS by 320 %

    Co-Housing Rodents with Different Coat Colours as a Simple, Non-Invasive Means of Individual Identification:Validating Mixed-Strain Housing for C57BL/6 and DBA/2 Mice

    Get PDF
    Standard practice typically requires the marking of laboratory mice so that they can be individually identified. However, many of the common methods compromise the welfare of the individuals being marked (as well as requiring time, effort, and/or resources on the part of researchers and technicians). Mixing strains of different colour within a cage would allow them to be readily visually identifiable, negating the need for more invasive marking techniques. Here we assess the impact that mixed strain housing has on the phenotypes of female C57BL/6 (black) and DBA/2 (brown) mice, and on the variability in the data obtained from them. Mice were housed in either mixed strain or single strain pairs for 19 weeks, and their phenotypes then assessed using 23 different behavioural, morphological, haematological and physiological measures widely used in research and/or important for assessing mouse welfare. No negative effects of mixed strain housing could be found on the phenotypes of either strain, including variables relevant to welfare. Differences and similarities between the two strains were almost all as expected from previously published studies, and none were affected by whether mice were housed in mixed- or single-strain pairs. Only one significant main effect of housing type was detected: mixed strain pairs had smaller red blood cell distribution widths, a measure suggesting better health (findings that now need replicating in case they were Type 1 errors resulting from our multiplicity of tests). Furthermore, mixed strain housing did not increase the variation in data obtained from the mice: the standard errors for all variables were essentially identical between the two housing conditions. Mixed strain housing also made animals very easy to distinguish while in the home cage. Female DBA/2 and C57BL/6 mice can thus be housed in mixed strain pairs for identification purposes, with no apparent negative effects on their welfare or the data they generate. This suggests that there is much value in exploring other combinations of strains
    • …
    corecore