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Abstract

In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the
impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a
framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated
with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant
indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in
October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index;
the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom
trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to
differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some
counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and
contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for
further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and
relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets
such as those set at Nagoya catalyse effective and measurable change.
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Introduction

In response to the general failure to meet the Convention on

Biological Diversity (CBD) goal to reduce the rate of loss of

biodiversity by 2010, the October 2010 Conference of the Parties

to the CBD agreed to a Strategic Plan with new targets for

biodiversity conservation until 2020 [1,2]. This Plan aims to

inspire action to halt the ongoing loss of biodiversity through the

development of national biodiversity strategies, targets and action

plans [1]. A set of CBD indicators for assessing and communi-

cating trends in seven focal areas, including biodiversity [3,4],

were used to assess the 2010 goals, and a similar set of indicators

are suggested for assessing progress towards the new targets

[1,5,6]. A key reason for the development of global biodiversity

indicators was their potential to evaluate actions and develop

understanding of underlying processes and drivers of loss [4,7,8],

but this is virtually never done [7,9]. Instead, indicators have

principally been used to track the status of and trends in

biodiversity and drivers of loss, from which the impact of actions

is inferred [3,10]. A Responses-Pressures-State-Benefits framework

is starting to be used by the CBD for presenting linked sets of

biodiversity indicators [11,12]; this implies causative links between

changes in groups of related indicators, but without an explicit

model of the mechanisms underlying these interactions.

To make sensible and robust policy decisions, an explicit

understanding of the linkages between action and outcomes is

needed. This requires the impacts of policies to be projected

forward using models, ideally as part of an adaptive decision-

making process that includes defining targets and monitoring the

results, which we term an ‘‘indicator-policy cycle’’ (Figure 1).

Models can be used by policy-makers to assess the impact of their

decisions, and to learn and evaluate both our understanding of the

relationship between policy action and environmental change, and

the appropriateness of the indicators for measuring change.
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Indicators are a key link in the cycle, as the means by which policy

outcomes are communicated and evaluated. However, there has

been very little evaluation of the robustness of indicators in

representing underlying biodiversity trends of interest, with

Branch et al. [13] and Fulton et al. [14] providing notable

exceptions.

In this paper we first outline the indicator-policy cycle, and

highlight the areas of strength and weakness in current applica-

tions of the cycle. We then illustrate how the CBD’s global

biodiversity indicators can be used with modelling to predict the

impacts of alternative policies, using two case studies: a

comparison of protected area policies for African mammals,

assessed using the Red List Index (RLI), an index of extinction risk

for species of plants and animals [15]; and an assessment of the

impact of a reduction in bottom trawl fishing, measured using the

Living Planet Index (LPI), a composite of time series of vertebrate

abundance and biomass [16]. The aim is not to provide a detailed

and comprehensive assessment of the impacts of the alternative

policies. Rather, the aims of these case studies are first to

demonstrate how biodiversity indicators can be used predictively

to evaluate the impacts of policy, and secondly to test the ability of

the indicators to represent biodiversity trends and to assess the

effects of underlying data biases on the trends they predict. The

case studies provide a test of the ability of two of the most

important and best-developed CBD indicators to demonstrate

progress towards the CBD’s 2020 targets.

We chose to model protected areas (PAs) in the first case study,

as they form the cornerstone of conservation, recognised in Target

11 of the headline 2020 CBD targets, which calls for at least 17%

of terrestrial areas to be placed in effective and well managed

protected areas by 2020 [1,5]. However, the extent of PA coverage

alone gives little information on how well PAs are performing in

protecting biodiversity [17]. Many PAs perform poorly in

maintaining biodiversity within their boundaries; for example,

Craigie et al. [18] found on average a 59% decline in population

abundance of large mammals between 1970 and 2005 in 78

African PAs, with considerable variation between regions and

countries. We chose to test the effects of policy on the RLI as PAs

are commonly instituted in order to protect threatened species. We

modelled the impact of four policies on trends in vertebrate

numbers in sub-Saharan Africa and on the RLI, and then

evaluated to what extent the RLI reflected these modelled trends.

We compared 4 policy scenarios: 1) business-as-usual; 2) expand-

ing PAs to 17% of the terrestrial area of each country; 3)

improving management effectiveness in current PAs; and 4)

expanding PAs to 17% and improving management effectiveness.

In the second case study, we modelled the impact on

biodiversity of two alternative policies, halving or halting bottom

trawling, in six ocean systems using 10 ecosystem models, and

calculated the ensuing changes in the LPI. Reduction in bottom

trawling is one potential policy action that could be implemented

in response to the CBD’s 2020 Target 6: ‘‘By 2020 all fish and

invertebrate stocks and aquatic plants are managed and harvested

sustainably, legally and applying ecosystem based approaches…’’

[1]. We chose to use the LPI in this case because it is more

appropriate for representing trends in common or abundant

species such as may be most affected by large-scale trawling. We

compared the trends in the LPI with modelled trends in

abundance of species assemblages.

The Indicator-policy Cycle
We argue that indicators should be used within an indicator-

policy cycle (Figure 1) that places monitoring with biodiversity

indicators within an decision analytic framework [19,20], drawing

on adaptive management [21,22], management strategy evalua-

tion [23], and optimal monitoring [24,25], where monitoring is

Figure 1. The indicator-policy cycle, a framework for using indicators to inform policy: Evaluation of the problem at hand involves
defining broad goals of policy, developing models of the system, selecting indicators that reflect the changes of interest, defining specific targets that
can be measured with the indicators, and defining a set of actions or policies to achieve the targets, which are assessed using the models. After
evaluation, actions are chosen and implemented, with resultant change on biodiversity and drivers of loss, which may also be affected by other
external drivers unrelated to the actions; change is monitored with the indicators and assessed against the targets, leading to re-evaluation. Key
sources of uncertainty and potential failure throughout the cycle are numbered and discussed in detail in Table S1: 1) assumptions in the evaluation
process; 2) the link between evaluation and selection of actions; 3) the link between selection and implementation of actions; 4) the impact of the
action differing from the anticipated impact; 5) the link between biodiversity change and indicator change; 6) the link between indicator change and
target assessment; and 7) mismatches in temporal and spatial scales throughout the cycle.
doi:10.1371/journal.pone.0041128.g001
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explicitly linked with action and learning. These approaches are

currently typically applied only at local to regional scales and to

single species management [24,26,27], although the cycle in

Figure 1 has parallels with emerging approaches to using

ecosystem-based indicators to manage and monitor the effects of

fishing [14,28,29,30]. The first stage comprises evaluation of the

problem at hand:

a) Define broad policy goals: For example five strategic goals for

2020 are identified in the CBD Strategic Plan, relating to

pressures on biodiversity, its status, benefits gained, main-

streaming biodiversity and implementation [1,31].

b) Develop a model or models of the system to understand system

dynamics and predict the impacts of alternative actions,

based on an understanding of underlying processes. Ideally

models will be quantitative, with an estimate of uncertainty in

the predictions; however qualitative conceptual and expert-

based models of how actions may affect indicators can

provide a basis for informing policy choices [32,33,34,35].

Our case studies differ in the types of models used: the first

uses statistically derived trend data for African mammals

within protected areas; the second uses process-based models

of marine systems.

c) Select indicators that measure trends of interest. Indicators are

needed as proxies for communicating the complex realities of

biodiversity change. Much has been written on indicator

selection and assessment [8,14,20,36], but the crucial need is

for indicators to be tested, in order to assess their ability to

detect relevant trends and measure progress at appropriate

scales, and to reflect change in response to policies relative to

the impacts of other drivers [14,29]; this is the focus of the

case studies below.

d) Narrow the broad policy goals to specific targets or milestones that

are measurable using the indicators, such as a specific

threshold value of an indicator [37], (e.g. the CBD 2020

Target 11: at least 17% of terrestrial areas within protected

areas (PAs), measured by PA coverage [5]), or a predefined

meaningful rate of change in the indicator [38] (e.g. CBD

Target 12: by 2020, the extinction of known threatened

species has been prevented and their conservation status has

been improved and sustained [5], which implies an increasing

Red List Index (RLI)). Whether or not a target has been met

can be used as a trigger for action.

e) Define a set of actions that can be implemented to achieve the

targets and use the model(s) to make predictions about the

potential impact of each potential action on biodiversity. The

predictions should quantify the effect on both the underlying

system of interest and the biodiversity indicators that will be

used to monitor system changes; we demonstrate this below

using two case studies. This information can then be used to

improve monitoring, in turn leading to learning that can

improve models. The impact of uncertainty on predictions

should be quantified and presented explicitly [7].

Actions are selected and then implemented, with direct and

indirect impacts on biodiversity and drivers of loss. Direct effects

might include the reduction of threats inside a newly implemented

protected area; indirect effects include displacement of fishing

activity from a marine protected area [39]. Other extrinsic drivers

can cause change unrelated to the actions, such as environmental

factors (e.g., drought, climate change), or political or macro-

economic change, making the effects of policy change difficult to

isolate [74]. If indicators are appropriate, they should change

proportionately to the changes in biodiversity and drivers. The

indicators are then assessed against the targets. Finally, the models,

indicators, targets and management actions are subjected to

iterative evaluation and reviewed in light of new monitoring data.

There are many points at which failure or uncertainties can

occur within the indicator-policy cycle. We identify seven potential

points of failure, numbered in Figure 1; examples of each, how

they can be addressed and by whom, are listed in the

supplementary material (Table S1). A major source of uncertainty

in the indicator-policy cycle is the relationship between the

indicators and the underlying trends of interest, which has two

components: the design of the indicator, and the quality or bias in

the data used to estimate it; we explore these in the case studies

below. Trade-offs inevitably exist: an indicator might be a good

proxy for biodiversity but the data needed are very difficult or

expensive to collect; alternatively an indicator might be readily

estimated with available data, but is a poor proxy for biodiversity

[13,17,40].

Results

Case study 1: The Effects on Mammals of Policies for
Protected Area Management in Africa

The predicted effect of changes in PA policy, as reflected by

changes in the RLI, suggested that without effective management,

expanding protected areas provided negligible benefit over

business-as-usual (BAU). Improving management effectiveness,

and thus stopping declines in abundance, provided much greater

benefits to the study species than just expanding PAs where

declines continue (Figure 2). Changes in the RLI were primarily

driven by population declines of threatened species in ineffective

PAs in Central and West Africa. Most of the study species were not

highly threatened and policy changes tended not to affect their

Red List categories.

Under effective management of current PAs, the RLI gradually

increased, showing a general improvement in species status over

time (Figure 2). Under both BAU and PA expansion, the RLI

declined rapidly at first, but later started to increase. This was due

not to improved species status but to shifts in the relative

contribution of populations that were increasing or decreasing to

the overall trend in population size, and the relatively short

timeframe over which declines are assessed under the Red List

criteria. Most of the threatened species had some declining and

some stable or increasing populations. As the declining popula-

tions became small, they contributed less to the overall trend for

the species as a whole, leading to species being downlisted under

Criterion A of the IUCN Red List, which relates to population

declines [41]. Secondly, the IUCN Red List criteria assess declines

over a period of 3 generations or 10 years, whichever is larger up

to 100 years. Because there were few very long-lived species in our

dataset, most species had an assessment of period of between 10 to

20 years. Consequently, large early declines were ‘forgotten’ by

later assessments, and the RLI increased. Nevertheless, although

the RLI was not particularly sensitive to the policies that we

examined, and trends in the indicator did not exactly relate to

changes in species abundance, the indicator was able correctly to

reflect the relative impacts of policy changes on biodiversity (as

represented by mammal population trends).

Another CBD indicator is PA coverage itself. Using PA

coverage as an indicator would lead to PA expansion being

chosen as the preferred option over improved management

effectiveness, because the indicator does not account for the

performance of PAs. A new CBD indicator of PA effectiveness is

currently under development [4]. Under our PA expansion

scenario, average PA coverage was 19% (ranging from 17% to

Policy Decisions with Biodiversity Indicators
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36%); currently, 29 of the 41 study countries have less than 17% of

their land area in PAs (mean PA coverage 12.5%, from 0 to 36%

[42]). Even though the RLI is a relatively coarse indicator, it is

more effective at representing the effects of policies on biodiversity

than PA coverage [41].

Case study 2: The Effect of Bottom Trawling on Marine
Biodiversity

The LPI showed muted and often negative responses to the

policies of halving and halting bottom trawling (Table 1), although

the total vertebrate biomass in the models increased in each ocean

system for both scenarios, with the exception of the North Pacific

when trawling effort was halved (Table 1). The model results were

driven by the relative increase in biomass of species that had been

targeted by bottom trawling or caught as by-catch, and by the

resultant trophic interactions. The composition of the data used to

construct the LPI affected its overall trend. The LPI datasets

within the study regions are dominated by seabirds and fish

(Table 2). Biomass trends of seabirds varied by region (Table 1):

they decreased in the North Sea [43] and Mediterranean Sea [44]

models, where they are highly reliant on discards for food, and in

one of the South Atlantic models [45], due to increased

competition after a release of fishing pressure on predatory fish.

In the Caribbean, seabirds increased with one of their main prey

species, which was released from direct fishing pressure. This

range of responses in seabirds alone made the interpretation of

trends in the LPI difficult.

Fish were the other group that dominated the LPI (Table 2).

The response of fish populations to the cessation of bottom

trawling was mixed (Table 1). Whether more predator or prey fish

species were included in the LPI, and how each was affected

directly or indirectly by the policy, affected indicator behaviour.

For example, in the Mediterranean [44], an end to trawling was

predicted to have a very positive impact on the biomass of hake

(directly targeted by fishing), flatfishes and rays (increases of 69%,

52% and 112% respectively). The LPI for the region included

trends for two flatfish species and the hake, but did not include

trends for ray species or the key prey groups that decreased as a

result of predation by increased hake and elasmobranch popula-

tions. By contrast, the LPI in the Mediterranean includes 16 bird

species; seabirds as a group were expected to decline by just under

20% based on a reduction in discards alone (other threatening

processes were not included in the model).

Discussion

There are many potential barriers to successfully halting

biodiversity loss; the complexity and scale of the problem is

enormous. The difficulties in collecting sufficient data to under-

stand the system and monitor trends emphasises the need to have a

clear understanding of the changes of interest and to evaluate the

capacity of a suite of indicators to detect them based on improved

data and scientific understanding. Recent initiatives such as GEO-

BON (The Group on Earth Observations Biodiversity Observa-

tion Network) for monitoring global biodiversity [46], and IPBES

(the Intergovernmental Science-Policy Platform on Biodiversity

and Ecosystem Services [47]) will contribute to bridging the gap

between multiple sources of information, research and policy [48].

However improved data and understanding are not enough unless

actions are also set within a framework that enables informed

decisions to be made, and their impact on biodiversity evaluated

both a priori and through ongoing monitoring. Such a framework

needs to include evaluation of the validity of the indicators used by

policy-makers to assess progress towards their targets.

The two key questions we posed with our case studies were: do

the policies have the expected impact on biodiversity? And do the

chosen indicators reflect this impact? In the case of the African

PAs, both answers were yes: species trends improved with effective

management, though the magnitude of the difference between

scenarios that included or excluded management effectiveness,

and the small impact of PA expansion without increased

management, were perhaps surprising. The RLI clearly reflected

the qualitative differences between policies, despite its counterin-

tuitive trajectory under PA expansion and BAU. However the

modelled impact of a cessation of bottom trawling on biodiversity

was mixed: some species and groups increased in biomass, others

decreased (e.g. seabirds decrease in abundance in several of the

modelled systems). In an ideal system, all species would be

monitored; in reality this is not the case. Because more data were

available on seabirds than other taxonomic groups, there was a

corresponding, disproportionately large impact on the LPI from

seabird trends due to data bias. As a result, the overall trends

shown in the LPI were not representative of all the populations in

the ecosystem, which showed largely positive trends. In any system

where policy impacts vary across species, particularly when there

are negative impacts on some groups, the trends in indicators will

be sensitive to the composition of data that feed into them,

supporting the need for testing indicators.

Figure 2. Changes over time in the Red List Index (RLI) under four policy scenarios for protected area management in Africa: 1)
business-as-usual, 2) expansion of terrestrial PA network to 17% of each country, 3) improved management effectiveness of PAs,
and 4) expansion to 17% with improved management effectiveness. The RLI was calculated for 53 species of large mammals in sub-Saharan
Africa; an increase in the RLI means a reduction in the average extinction risk of this set of species.
doi:10.1371/journal.pone.0041128.g002
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The response to policy of both the species of interest and the

indicators reflected the modelling approach used and the species

included in the indicators. In the African mammals example, we

assumed that all species would benefit from improved manage-

ment effectiveness, which simplified the trends that the indicator

had to reflect; this assumption can be justified by similar

threatening processes faced by many African mammals, such as

over-hunting and habitat loss [18,49]. It is also likely that species

interactions would affect trends in some species; for example

negative impacts on some ungulates might be expected due to

increased abundance of predators [50]; such interactions were not

included in our simple trend-based models. By contrast, in the

Ecopath models, trophic interactions were included explicitly,

reflecting both direct and indirect effects of policies, such as

increasing predator numbers and resultant decreases in prey and

in competitors. However, the Ecopath models did not include

impacts of threats other than fishing or recent trends in

abundance, and therefore may underestimate the risk of extinction

for many species. For example, while seabird abundance declined

in several models, this was due to reduction in food availability

from by-catch, and not other threats such as loss of nesting sites or

predation. The Ecopath models were not designed with the

intention of modelling threats faced by individual seabird species,

but rather modelled seabirds as a functional group within a trophic

web. Species-specific threat modelling in both case studies would

better account for such effects, but would be difficult when dealing

with large numbers of species. However, the aim of this study was

not to provide a comprehensive scenario analysis of the impact of

halting trawling or expanding PAs in Africa, but to illustrate how

CBD targets and indicators can be evaluated within a predictive

modelling framework.

Our results show the importance of having an indicator with a

robust relationship to the underlying system dynamics. Both indices

relate to extinction risk: the LPI through one symptom of risk,

geometric mean abundance, and the RLI by using a suite of

symptoms of risk [51]. The RLI provides a relatively coarse-scale

assessment of extinction risk based on movement between the

IUCN Red list categories that classify relative extinction risk of

species based on threshold values for decline and abundance [52].

Thus movement from one threat category to another requires either

a substantial change in abundance or trends, or for the species to

already be very close to a threshold value. Consequently, the RLI

would be unlikely to differentiate between the marine trawling

policies, which have large effects for non-threatened species and

mixed (some negative, some positive) for more threatened species.

The trawling case study demonstrates the value of indicator

assessment to diagnose the basis for poor indicator performance.

While the potential effects of taxonomic bias in indicators has been

discussed elsewhere [4,16,53], process-based models such as this

explicitly demonstrate the quantitative impacts of the underlying

Table 1. The impact on the Living Planet Index (LPI) of halving or halting bottom trawling in six ocean systems, based on biomass
trends in modelled vertebrate groups represented in the LPI.

Ocean system LPI: Halve LPI: Halt
Vertebrate
biomass: halve

Vertebrate
biomass: halt Mammals Seabirds Sea turtles Sharks & rays Other fish

Global 22.5% 21.3% 0.7% 2.0% , , , , ,

North Pacific 25.6% 20.7% 20.1% 1.4% , , , ,

North & Baltic Seas 2.7% 23.3% 2.2% 5.1% , , ,

Mediterranean & Black
Sea

20.7% 20.8% 1.4% 3.4% ,

South Pacific 3.6% 5.3% 3.8% 7.5% ,

South Atlantic 24.7% 23.8% 0.1% 0.3% , , – ,

Caribbean & Gulf of
Mexico

21.5% 21.3% 0.8% 1.5% – – , ,

Columns show the % change in the LPI 30 years after implementation of the policies, and the % change in total vertebrate biomass; and for each taxonomic group, the
general biomass trends for different species groups from the Ecopath models from halting bottom trawling (the general biomass trends per group were typically
stronger under a halt in bottom trawling than under a halving of effort); symbols: – ,5% change, .5% increase, .20% increase, .5% decrease, .20%
decrease, , mixed: different responses were seen across models, species and/or functional groups, blank denotes that the group was not modelled.
doi:10.1371/journal.pone.0041128.t001

Table 2. The modelled species groups used to calculate the LPI for each region.

Ocean system No. spp Mammals Seabirds Sea turtles Sharks & rays Other fish

Global 377 10% 36% 3% 3% 49%

North Pacific 142 19% 27% 3% 3% 48%

North & Baltic Seas 85 0% 46% 0% 4% 51%

Mediterranean & Black Sea 28 7% 57% 0% 11% 25%

South Pacific 44 2% 34% 7% 0% 57%

South Atlantic 86 6% 42% 0% 1% 51%

Caribbean & Gulf of Mexico 26 4% 35% 19% 8% 35%

The number of species used in the LPI for each system, and the percentage of species in each group that contributed to the LPI database.
doi:10.1371/journal.pone.0041128.t002
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data and the specific assumptions of predictive models on indicator

performance [13,14]. Previous modelling has suggested that

biomass indicators are amongst the most robust in detecting the

effects of fishing, particularly for functional groups and higher

trophic levels [14,29], although aggregating data can mask trends

because increases in some groups balance decreases in others

[29,54], or result in counter-intuitive responses to policy. These

previous results, combined with the case study presented here,

suggest that single indicators do not easily represent policies with

complex ecosystem effects [13]. Indeed, the approach of ecosys-

tem-based fisheries science is to use a suite of indicators together

with a set of validated alternative models to explore plausible

scenarios of change [14,28,30].

Currently global biodiversity indicators have been used only to

report on trends, effectively comprising only two stages of the

indicator-policy cycle illustrated in Figure 1. Adaptive manage-

ment in general has been applied in limited ways at the local level

[22]. Indicators have rarely been used to report against explicit

targets or baselines, nor have they been linked into evaluation of

the effectiveness of action. Most model-based predictions of policy

effects have not used biodiversity indicators that can be readily

monitored, instead relying on metrics such as mean species

abundance and projected number of species extinctions [7,9,34].

Evidence-based modelling, both predictive (using scenarios and

counterfactuals) and retrospective (using statistical models), allows

different processes and causal relationships to be understood

[32,55,56] and is essential to improving the value of biodiversity

indicators for decision-making. If conservation scientists are to

influence policy, they must be bold enough to make predictions

and give advice that aids decision-makers, or they will remain

peripheral to important decision-making processes.

Materials and Methods

Case study 1: The Effects on Mammals of Policies for
Protected Area Management in Africa

We modelled the impact on a key CBD indicator, the Red List

Index (RLI) [15], of continental-scale policies for African terrestrial

PAs based on current trends in vertebrate abundance: 1) business-

as-usual; 2) expanding PAs to 17% of the terrestrial area of each

country; 3) improving management effectiveness in current PAs;

and 4) expanding PAs to 17% and improving management

effectiveness (for more details, see [41]). The aim of this study was

not to provide a detailed analysis of the effects of these policies on

biodiversity, but instead to assess whether the RLI effectively

captured realistic trends in biodiversity caused by a policy change.

The analyses comprised a series of steps, first to establish estimates

of population size, distribution and current rates of decline for each

species, then the application of the policy scenarios, and finally,

resultant changes in species abundance under the scenarios were fed

into the Red List Index. For more details on methods, further

scenarios and sensitivity analyses, see [41].

Our case study comprised 53 mammal species in 41 countries in

four regions, East, Southern, West, and Central Africa (Table S2).

Trends in mammal abundance in PAs vary greatly by region; for

example, declines are greatest in West and Central Africa, with

more moderate declines in East Africa, and increasing populations

in Southern Africa [18]. Country-level estimates of population size

for each species inside and outside of protected areas were collated

or estimated from IUCN species survival commission and other

publications (see Table S2 for sources) [41].

For each species in each region, inter-annual trends in

population sizes within protected areas were estimated from time

series as described in [18]. The time series varied in length and the

amount of data; where six or more data points were available, a

GAM was used to estimate inter-annual trends following [16];

where there were fewer data, inter-annual rates of change were

estimated between consecutive years or linearly interpolated for

non-consecutive years, and averaged across years [18]. Where

multiple estimates of trends were available within a region, such as

several PAs in one country or across several countries, the geometric

mean of population trends was used to produce a regional trend per

species in PAs. Currently no comprehensive trend data exist for the

study species outside PAs, although empirical data suggest lower

densities of mammal species outside PAs than inside in Tanzania

[57,58], supported by expert opinion on African tropical forests

[49]. In the absence of trend data, we assumed that population

trends for all species would be 25% worse outside PAs than inside

PAs. Therefore, positive trends were decelerated by 25% and

negative trends accelerated by 25%. Sensitivity analyses showed the

qualitative results to be robust to the assumed difference in trend

between populations inside and outside PAs [41].

The impact of each policy scenario on trends in abundance of

the study species was modelled over a 30-year period, assuming

constant annual trends and immediate implementation. We

modelled four scenarios:

Scenario 1: Business as usual (BAU). Current population

trends in PAs for each species in each region were applied to

populations inside existing PAs (from the World Database on

Protected Areas in 2010 [42]). Trends outside PAs were assumed

to be 25% worse than those inside PAs.

Scenario 2: Expand terrestrial PA coverage to 17% of each

country. We used the conservation planning software Marxan

[59] to select 25625 km gridcells to add to the current PA

network, based on habitat suitability models for the target species

[60]. We used country-level targets of 17% of each country. The

continental-level target for species was between 5% and 100% of

the total area of suitable habitat [60]. We assumed that the suitable

habitat in the added PAs was occupied (thus potentially over-

estimating the positive impacts of PA expansion due to commis-

sion errors) and had the same population density as the current

PAs. The populations in the newly-added PAs were therefore a

function of the area of suitable habitat and the density of the

species within the current PAs, and was subtracted from the

formerly unprotected populations to ensure that the total

population of the species within a country did not increase

immediately upon adding PAs. The population trends for each

species in each region applied to populations inside and outside

PAs were the same as those used in BAU (Scenario 1).

Scenario 3: Improved management effectiveness in

Pas. No consistent data exist on the impact of effective

management within PAs across Africa. PAs in Southern Africa

are considered to be most effectively managed [18]. Therefore we

assumed that populations in effectively managed PAs would

experience the same annual rate of increase as the average across

all species in Southern African PAs (+1.8% [18]), except for those

that already had a more positive annual trend, which was assumed

to stay constant. A sensitivity analysis showed that the value of the

assumed trend in effectively managed PAs had no effect on the

relative impacts of the policies [41]. Population trends outside PAs

were the same as those used for in BAU (Scenario 1).

Scenario 4: Expand PA coverage to 17% of each country

and increase management effectiveness of Pas. The areas

added to the current PA network were the same as those described

above in the expansion scenario (Scenario 2), with the same

corresponding redistribution of populations between PAs and non-

PAs. The population trends inside PAs were the same as those

used in the effectiveness scenario (Scenario 3), based on current
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trends in Southern Africa. Trends outside PAs were the same as

BAU (Scenario 1).

Calculating the RLI. From the population projections in

each scenario, each species was assigned to a Red List category at

decadal intervals using the IUCN Red List Criteria version 3.1

[61] criteria A and C (reflecting decline rate and population size

respectively), using generation times from the PanTHERIA

database [62]. The trends for criterion A were based on the

current inter-annual trends and species-specific generation time,

and thus estimated trends for a time period that include both past

and future trends (Criterion A4) or future time period alone

(Criterion A3). The population size (IUCN Criterion C) at each

modelled assessment was estimated using the total projected

abundance as a result of the policies in each scenario; for

simplicity’s sake the sub-criteria for Criterion C were not applied,

and all individuals were assumed to be mature. The Red List index

was calculated for each scenario at decadal intervals [15].

Case study 2: The Effect of Bottom Trawling on Marine
Biodiversity

Bottom trawling has significant effects on marine biodiversity

[63], and there have been calls for the practice to be halted [64].

We simulated the effects of halting and halving bottom trawling on

marine ecosystems using Ecopath with Ecosim (EwE), a modelling

suite for constructing food-web models of marine systems [65]. In

EwE, a food-web is represented as a set of mass/energy flows

connecting the model groups, which can represent populations,

functional and taxonomic groups, or life-history stages. Each

Table 3. The ten Ecopath models used to simulate the policies of ending and halving bottom trawling, the stated objectives in the
studies in which the models are described, the number of functional or taxonomic groups each model contained, the number of
these groups represented in the LPI, the fraction of fishing fleets that were bottom trawl-based and thus affected by the policies,
and the ocean system the region lies in.

Model Region
and reference Model objective

Groups in
Ecopath
model

Groups
in LPI

Bottom trawl
fleets/total
fishing fleets

Ocean
System

Central Gulf of
California [70]

To characterize the trophic relationships and biomass flow
paths; to learn the role of some functional groups,
particularly of discards, in the ecosystem

27 7 1/4 North Pacific
(temperate)

East China
Sea [71]

To examine possible mechanisms leading to jellyfish blooms
and the impact of these blooms on fishery resources

45 11 1/6 North Pacific
(temperate)

Western and Central
Aleutians [69]

To examine the decline in the western stock of Steller sea
lions, Eumetopias jubatus

40 21 1/6 North Pacific
(temperate)

North Sea [43] To quantitatively describe the ecological and spatial structure
of species assemblages of the North Sea ecosystem; and to
calibrate the dynamic responses of the modelled system
by comparison with observed historical changes

68 27 4/12 North & Baltic
Seas (temperate)

Northern Adriatic
Sea [44]

To analyse the trophic structure of the system, identify the key
trophic groups, and assess anthropogenic impacts on
the ecosystem

34 9 2/6 Mediterranean &
Black Sea

Great Barrier
Reef [72]

To identify the effects of the major fisheries in each of the
component systems, and the possible confounding effects of
independently developed fisheries management plans

32 8 1/3 South Pacific
(tropical)

Northern
Benguela [73]*

To construct an improved, updated, dynamic ecosystem model
of the trophic flows of the northern Benguela, to facilitate the
development and evaluation of multispecies management
techniques for the marine resources of Namibia and possibly
the entire Benguela

26 2 1/8 South Atlantic
(tropical)

Southern
Benguela [45]*

To identify data gaps and imbalances that result from
inconsistencies between various stock assessments; …
to assess how observed differences or similarities in abundance,
catches and dietary composition could affect overall trophic
functioning, focusing on the pelagic part of the southern
Benguela ecosystem

27 11 1/6 South Atlantic
(tropical)

West Florida
Shelf [68,74]

‘‘to evaluate the potential effects of shading by phytoplankton
blooms on community organization’’
‘‘The general questions addressed in this study were: (1) Are
there multiyear trends in water transparency over the West
Florida Shelf? (2) What proportion of the overall primary
production on the West Florida Shelf is made up by
microphytobenthos?
(3) What broad community effects might result from nutrient
enrichment and phytoplankton blooms?’’

59 6 1/11 Caribbean & Gulf
of Mexico
(tropical)

Gulf of Mexico,
Alvarado
Shelf [75]

‘‘to integrate in a coherent way knowledge about the system, to
learn more about the structure and function of the system, and
to help to understand the ecosystem function’’

40 6 1/1 Caribbean & Gulf
of Mexico
(tropical)

*The models used for Northern and Southern Benguela are updated versions of the published ones, provided by Lynne Shannon (Southern Benguela) and Jean-Paul
Roux (Northern Benguela), while the model for the Gulf of Mexico was provided by V.H. Cruz-Escalona.
doi:10.1371/journal.pone.0041128.t003
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model group is characterized by the total biomass of the organisms

composing it, their diet preference, production and consumption

rates, and so forth. Two main steps are required to simulate the

biomasses of such groups over time. First, a static, mass-balanced

food-web model is constructed. A model is mass-balanced if the

flows entering any given group (consumption) equal the sum of its

unassimilated consumption, production and respiration, and if

production is equal to the sum of all the possible mortality sources

(predation, fishing, other sources), of net migration fluxes and of

biomass accumulation in that group. The mass-balance condition

is useful to constrain the uncertainty in model parameters,

ensuring that they are mutually consistent and that mass/energy

is conserved. As a second step, the static model is used as an initial

condition to simulate changes in the biomass of the model groups

over time, through a system of differential equations. Biomass

variations can result from ‘‘top down’’ processes, such as biomass

removal through fishery catches and predator-prey interactions,

and ‘‘bottom up’’ processes; for example, the modeller can force

primary productivity or simulate how it is affected by nutrient

loads. Other bottom up processes such as the effects of

temperature and climatic variability are more difficult to simulate,

because EwE is focused on biomass flows and trophic interactions,

especially in higher trophic levels. Because complex trophic

interactions are taken into account, the cascading effects of fishing

across the food-web can be simulated. Therefore, EwE modelling

allows the direct as well as indirect effects of fisheries to be

quantified [65]. Direct effects of bottom trawling may include

fishing pressure on the target species as well as by-catch and

discarding practices (e.g. of benthic organisms caught by bottom

trawling), while indirect effects include trophic interactions [63].

We used ten Ecopath models from six ocean systems (Table 3),

with the goal of covering different ecosystems worldwide. The

models were selected based on model quality, documentation and

data availability; key information such as data sources, input data

and parameter estimates, and predator-prey and diet matrices for

each model can be found in the relevant references (Table 3). Only

models that included species in the LPI dataset and with separate

bottom trawling fleets were used. The aims of each model varied to

some extent (Table 3), but generally the models were built with the

purpose of better understanding the trophic interactions of the

systems, and the impacts of anthropogenic pressures such as fishing.

Each model was run for 20 years prior to policy implementation

to allow the biomass trajectories to stabilise, and for a further 50

years after the policy implementation to allow for recovery of

longer-lived species and for resulting biomasses to stabilise. The

Ecopath models did not cover all areas of each ocean system

modelled; rather we treated the models as samples of each system,

and extrapolated trends in groups from each model across the

ocean systems, similar to [66]. This assumed that fishing pressure

and the subsequent reduction in bottom trawling were uniform

across a given ocean system.

The impacts of the policies on functional groups modelled in

Ecopath were extrapolated to species within the LPI database in

order to evaluate the degree to which the indicator captures the

complex, ecosystem-wide effects of a policy change [67]. Species

were allocated to appropriate functional or taxonomic groups

modelled in each ocean system, unless there was no applicable

group. There were differences between the level of detail and

number of functional groups per model. Some models used

functional groups based on taxonomic groups, such as the North

Sea model [43], which contains many individual species, sometimes

separated by life-history stages, e.g. juvenile and adult Atlantic cod

(Gadus morhua); other models were more function and habitat

focussed, with groups such as benthic coastal invertebrate eaters in

the West Florida Shelf model [68]. For example, in the North Sea

[43], the humpback whale, Megaptera novaeangliae, was allocated to

the modelled group ‘‘Baleen whale’’, and the Atlantic herring,

Clupea harengus, to the single-species group ‘‘Herring’’. Where there

was more than one model for an ocean system, such as the North

Pacific, which contains three models [69,70,71], species were

allocated to a functional group within the model that best matched

the distribution of different populations in the LPI database.

Typically only a minority of the groups modelled in Ecopath were

represented in the LPI (Table 3).

Thus each model within an ocean system was extrapolated to

the level of ocean system by not just allocating species from the

model location to a functional group, but allocating most species in

the LPI database for the ocean system to a modelled functional

group. The LPI uses relative measures of change in abundance of

each species as input data; we assumed that changes in modelled

biomass as a result of the policy were proportional to changes in

abundance. Once all possible species had been allocated a

functional group, the projected change in species abundance for

each scenario were used to calculate the LPI, a function of the

geometric mean of abundance, as described in [16]. Further

information on the analyses can be found in [67].
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