27 research outputs found
Laparoscopic sacrocolpopexy with bone anchor fixation: short-term anatomic and functional results
Contains fulltext :
108485.pdf (publisher's version ) (Open Access)INTRODUCTION AND HYPOTHESIS: The aim of this study was to evaluate short-term anatomic and functional outcomes and safety of laparoscopic sacrocolpopexy with bone anchor fixation. METHODS: A prospective cohort study of women undergoing laparoscopic sacrocolpopexy between 2004 and 2009. Anatomic outcome was assessed using the pelvic organ prolapse quantification score (POP-Q). Functional outcomes were assessed using the Urogenital Distress Inventory, Defecatory Distress Inventory, and the Incontinence Impact Questionnaire preoperatively and at 6 months postoperatively. The Wilcoxon signed rank test was used to test differences between related samples. RESULTS: Forty-nine women underwent laparoscopic sacrocolpopexy. The objective success rate in the apical compartment was 98%, subjective success rate was 79%. One mesh exposure (2%) was found. One conversion was necessary due to injury to the ileum. CONCLUSIONS: Laparoscopic sacrocolpopexy with bone anchor fixation is a safe and efficacious treatment for apical compartment prolapse. It provides excellent apical support and good functional outcome 6 months postoperatively.1 april 201
Prevalence and risk factors for mesh erosion after laparoscopic-assisted sacrocolpopexy
The purpose of this study is to identify risk factors for mesh erosion in women undergoing minimally invasive sacrocolpopexy (MISC). We hypothesize that erosion is higher in subjects undergoing concomitant hysterectomy.
This is a retrospective cohort study of women who underwent MISC between November 2004 and January 2009. Demographics, operative techniques, and outcomes were abstracted from medical records. Multivariable regression identified odds of erosion.
Of 188 MISC procedures 19(10%) had erosions. Erosion was higher in those with total vaginal hysterectomy (TVH) compared to both post-hysterectomy (23% vs. 5%, p = 0.003) and supracervical hysterectomy (SCH) (23% vs. 5%, p = 0.109) groups. In multivariable regression, the odds of erosion for TVH was 5.67 (95% CI: 1.88–17.10) compared to post-hysterectomy. Smoking, the use of collagen-coated mesh, transvaginal dissection, and mesh attachment transvaginally were no longer significant in the multivariable regression model.
Based on this study, surgeons should consider supracervical hysterectomy over total vaginal hysterectomy as the procedure of choice in association with MISC unless removal of the cervix is otherwise indicated
Phage Display against Corneal Epithelial Cells Produced Bioactive Peptides That Inhibit Aspergillus Adhesion to the Corneas
Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human corneal epithelial cells (HCEC). Fourteen sequences were obtained and BLASTp analysis showed that most of their homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J) were measured for their affinity to bind cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture, the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f) adhesion to HCEC in a dose-dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration. Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also proposed that the phage display technique and the resultant peptides could be used to explore host-pathogen interactions at molecular levels
Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals
To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes
Longitudinal Molecular Trajectories of Diffuse Glioma in Adults
The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear ¹² . Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of difuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specifc gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at diferent rates across the glioma subtypes, and hypermutation was not associated with diferences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner
A prospective comparison of two commercial mesh kits in the management of anterior vaginal prolapse
Vaginal mesh kits are increasingly used in the management of pelvic organ prolapse. This study aimed to determine similarity of outcomes of the Anterior ProliftA (R) with PerigeeA (R) systems for anterior compartment prolapse
Emerging threats to tropical forests
The drivers of tropical forest destruction and key perils to biodiversity have changed over the past one to two decades and will continue to evolve in the future. Industrial drivers of forest conversion–such as logging, large-scale soy and cattle farming, oil-palm plantations, and oil and gas development–have escalated in importance, buoyed by rapid globalization, economic growth, and rising standards of living in developing nations. Biofuels are likely to grow rapidly as a driver of future forest destruction. Climate change is increasingly emerging as a potentially serious driver of change in the tropics, and some fauna, such as amphibians, are being decimated by emerging pathogens. In general, old-growth forests are vanishing rapidly and being replaced by fragmented, secondary, and logged forests. These various environmental insults often operate in concert, magnifying their impacts and posing an even greater threat to tropical forest canopies and their biodiversity