29 research outputs found

    Amiloride Enhances Antigen Specific CTL by Faciliting HBV DNA Vaccine Entry into Cells

    Get PDF
    The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-Îł+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses

    Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells

    Get PDF
    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement – a stage between initial cellular internalization and final gene silencing of siRNA delivery systems

    Accelerated stem cell labeling with ferucarbotran and protamine

    Get PDF
    To develop and characterize a clinically applicable, fast and efficient method for stem cell labeling with ferucarbotran and protamine for depiction with clinical MRI. The hydrodynamic diameter, zeta potential and relaxivities of ferucarbotran and varying concentrations of protamine were measured. Once the optimized ratio was found, human mesenchymal stem cells (MSCs) were labeled at varying incubation times (1–24 h). Viability was assessed via Trypan blue exclusion testing. 150,000 labeled cells in Ficoll solution were imaged with T1-, T2- and T2*-weighted sequences at 3 T, and relaxation rates were calculated. Varying the concentrations of protamine allows for easy modification of the physicochemical properties. Simple incubation with ferucarbotran alone resulted in efficient labeling after 24 h of incubation while assisted labeling with protamine resulted in similar results after only 1 h. Cell viability remained unaffected. R2 and R2* relaxation rates were drastically increased. Electron microscopy confirmed intracellular iron oxide uptake in lysosomes. Relaxation times correlated with results from ICP-AES. Our results show internalization of ferucarbotran can be accelerated in MSCs with protamine, an approved heparin antagonist and potentially clinically applicable uptake-enhancing agent

    Active immunization of Japanese quail hens with a recombinant chicken inhibin fusion protein enhances production performance

    Get PDF
    The effects of active immunization against inhibin on production performance in female Japanese quail (Coturnix coturnix japonica) were assessed in two separate trials using an MBP-cINA521 fusion protein as an immunogen. The fusion protein, MBP-cINA521, consisted of the bacterial maltose binding protein (MBP) and a truncated form of the mature α-subunit of chicken inhibin (cINA521). MBP-cINAl521 was constructed by: 1) excising a 521-bp PstI fragment from a chicken inhibin α-subunit cDNA (cINA6; gift of P. A. Johnson), 2) cloning this fragment, which encodes all but the first 11 amino acid residues of the mature α-subunit, into the pMal-c2 vector of the MBP fusion expression system, and 3) expressing the fusion protein (MBP-cINA521) from the Escherichia coli and purifying it using affinity chromatography. In each trial, quail were randomly and equally assigned to one of two injection treatments as follows: 1) MBP-cINA521 in Freund\u27s adjuvant, or 2) Freund\u27s adjuvant (vehicular controls; CON). All immunizations were given subcutaneously and Freund\u27s complete and incomplete adjuvant were used for primary and booster injections, respectively. In Trial 1, birds were given a primary challenge of 0.2 mg MBP-cINA521 per bird at 25 d of age, followed by booster immunizations (0.1 mg MBP-cINA521 per bird) at 33, 40, 47, 54 and 61 d of age and every 35 d thereafter. The CON birds received vehicular immunizations at the same time intervals. In Trial 2, birds treated with MBP-cINA521 received a primary challenge of 0.2 mg MBP-cINA521 per bird at 26 d of age, followed by booster immunizations (0.1 mg MBP-cINA521 per bird) using the same schedule as that used in Trial 1, with the exception that no boosters were given after 61 d of age. The CON birds received vehicular immunizations at the same time intervals. Collection of production performance data was initiated coincident with the laying of the first egg in each trial (i.e., beginning at 41 and 44 d of age for Trials 1 and 2, respectively) and continued for 30 1-wk periods of lay. Combined data from Trials 1 and 2 indicated that the mean ± SE age at first egg lay was markedly decreased (P \u3c 0.005) in MBP-cINA521-treated quail (53.4 ± 0.9 d of age) when compared to the CON (57.6 ± 1.3 d of age). Likewise, the mean ± SE age at 50% egg production was reduced (P \u3c 0.03) in quail immunized against inhibin (65.4 ± 2.1 d of age) when compared to the CON (77.6 ± 4.7 d of age). Total hen-day egg production was also higher (P \u3c 0.05, Trial 1; P \u3c 0.01, Trial 2) in MBP-cINA521-treated quail (88.7 ± 1.4%, Trial 1; 90.1 ± 1.2%, Trial 2) than in the CON birds (81.9 ± 2.9%, Trial 1; 73.6 ± 6.5%, Trial 2). Collectively, these findings provide evidence that inhibin immunoneutralization accelerated puberty and enhanced hen-day egg production during a 30-wk period of egg lay in Japanese quail

    Assembly, Characterization, and Delivery of Quantum Dot Labeled Biotinylated Lipid Particles

    No full text
    Lipid nanoparticles composed of mixtures of PEGylated-lipids; cationic and neutral lipids prepared by detergent dialysis can encapsulate biological active molecules and show considerable potential as systemic therapeutic agents. Addition of biotinylated lipids to this formulation allows surface modification of these particles with a suitable ligand or probe conjugated to streptavidin for specific cell targeting. Monitoring long circulating particles and cellular uptake requires stable and bright fluorescent probes. Quantum dots (QDs) constitute a relatively new class of fluorescent probes that overcome the limitations of organic fluorophores in biological imaging applications. Here, a protocol for the encapsulation of QD655 (red) in biotinylated lipid particles (BLPs) prepared by a detergent dialysis technique is presented followed by characterization of the loaded liposomal vehicles. Then, a protocol for BLPs surface modification via biotin-streptavidin linkage with preformed complexes of ligand-QD525 (green) for specific cell targeting of the nanoparticle is detailed. Conditions for cell binding and uptake of two colors QD labeled BLPs as well as basic microscopic settings for confocal live cell imaging are described

    Caco-2 cell acquisition of dietary iron(III) invokes a nanoparticulate endocytic pathway

    Get PDF
    Dietary non-heme iron contains ferrous [Fe(II)] and ferric [Fe(III)] iron fractions and the latter should hydrolyze, forming Fe(III) oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite- like particles. Synthetic analogues of these (~ 10 nm hydrodynamic diameter) were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization) by the cells, which, unlike for soluble forms of iron, was reduced ( p =0.02) by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion ( p <0.05) whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III) by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II

    Role of temperature-independent lipoplex–cell membrane interactions in the efficiency boost of multicomponent lipoplexes

    No full text
    Multicomponent lipoplexes have recently emerged as especially promising transfection candidates, as they are from 10 to 100 times more efficient than binary complexes usually employed for gene delivery purposes. Previously, we investigated a number of chemical–physical properties of DNA–lipid complexes that were proposed to affect transfection efficiency (TE) of lipoplexes, such as nanoscale structure, size, surface potential, DNA-protection ability and DNA release from complexes upon interaction with cellular lipids. Although some minor differences between multicomponent and binary lipoplexes were found, they did not correlate clearly with efficiency. Instead, here we show that a marked difference between the cell internalization mechanism of binary and multicomponent lipoplexes does exist. Multicomponent lipoplexes significantly transfect cells at 4 °C, when endocytosis does not take place suggesting that they can enter cells via a temperature-independent mechanism. Confocal fluorescence microscopy experiments showed the existence of a correlation between endosomal escape and TE. Multicomponent lipoplexes exhibited a distinctive ability of endosomal escape and release DNA into the nucleus, whereas, poorly efficient binary lipoplexes exhibited minor, if any, endosomal rupture ability and remained confined in perinuclear late endosomes. Stopped-flow mixing measurements showed that the fusion rates of multicomponent cationic liposomes with anionic vesicles, used as model systems of cell membranes, were definitely shorter than those of binary liposomes. As either lipoplex uptake and endosomal escape involve fusion between lipoplex and cellular membranes, we suggest that a mechanism of lipoplex–cellular membrane interaction, driven by lipid mixing between cationic and anionic cellular lipids, does explain the TE boost of multicomponent lipoplexes
    corecore