101 research outputs found

    EXPLICIT: a feasibility study of remote expert elicitation in health technology assessment

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this recordBACKGROUND: Expert opinion is often sought to complement available information needed to inform model-based economic evaluations in health technology assessments. In this context, we define expert elicitation as the process of encoding expert opinion on a quantity of interest, together with associated uncertainty, as a probability distribution. When availability for face-to-face expert elicitation with a facilitator is limited, elicitation can be conducted remotely, overcoming challenges of finding an appropriate time to meet the expert and allowing access to experts situated too far away for practical face-to-face sessions. However, distance elicitation is associated with reduced response rates and limited assistance for the expert during the elicitation session. The aim of this study was to inform the development of a remote elicitation tool by exploring the influence of mode of elicitation on elicited beliefs. METHODS: An Excel-based tool (EXPLICIT) was developed to assist the elicitation session, including the preparation of the expert and recording of their responses. General practitioners (GPs) were invited to provide expert opinion about population alcohol consumption behaviours. They were randomised to complete the elicitation by either a face-to-face meeting or email. EXPLICIT was used in the elicitation sessions for both arms. RESULTS: Fifteen GPs completed the elicitation session. Those conducted by email were longer than the face-to-face sessions (13 min 30 s vs 10 min 26 s, p = 0.1) and the email-elicited estimates contained less uncertainty. However, the resulting aggregated distributions were comparable. CONCLUSIONS: EXPLICIT was useful in both facilitating the elicitation task and in obtaining expert opinion from experts via email. The findings support the opinion that remote, self-administered elicitation is a viable approach within the constraints of HTA to inform policy making, although poor response rates may be observed and additional time for individual sessions may be required.This paper presents independent research funded by the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula

    Cost-effectiveness of intermittent preventive treatment of malaria in infants (IPTi) for averting anaemia in Gabon: a comparison between intention to treat and according to protocol analyses

    Get PDF
    ABSTRACT: BACKGROUND: In Gabon, the impact of intermittent preventive treatment of malaria in infants (IPTi) was not statistically significant on malaria reduction, but the impact on moderate anaemia was, with some differences between the intention to treat (ITT) and the according to protocol (ATP) trial analyses. Specifically, ATP was statistically significant, while ITT analysis was borderline. The main reason for the difference between ITT and ATP populations was migration. METHODS: This study estimates the cost-effectiveness of IPTi on the reduction of anaemia in Gabon, comparing results of the ITT and the ATP clinical trial analyses. Threshold analysis was conducted to identify when the intervention costs and protective efficacy of IPTi for the ATP cohort equalled the ITT cost-effectiveness ratio. RESULTS: Based on IPTi intervention costs, the cost per episode of moderate anaemia averted was US12.88(CI9512.88 (CI 95% 4.19, 30.48) using the ITT analysis and US11.30 (CI 95% 4.56, 26.66) using the ATP analysis. In order for the ATP results to equal the cost-effectiveness of ITT, total ATP intervention costs should rise from US118.38toUS118.38 to US134 or the protective efficacy should fall from 27% to 18.1%. The uncertainty surrounding the cost-effectiveness ratio using ITT trial results was higher than using the ATP results. CONCLUSIONS: Migration implies great challenges in the organization of health interventions that require repeat visits in Gabon. This was apparent in the study as the cost-effectiveness of IPTp-SP worsened when drop out from the prevention was taken into account. Despite such challenges, IPTi was both inexpensive and efficacious in averting cases of moderate anaemia in infant

    Reduction of Severe Acute Maternal Morbidity and Maternal Mortality in Thyolo District, Malawi: The Impact of Obstetric Audit

    Get PDF
    BACKGROUND: Critical incident audit and feedback are recommended interventions to improve the quality of obstetric care. To evaluate the effect of audit at district level in Thyolo, Malawi, we assessed the incidence of facility-based severe maternal complications (severe acute maternal morbidity (SAMM) and maternal mortality) during two years of audit and feedback. METHODOLOGY/PRINCIPAL FINDINGS: Between September 2007 and September 2009, we included all cases of maternal mortality and SAMM that occurred in Thyolo District Hospital, the main referral facility in the area, using validated disease-specific criteria. During two- to three-weekly audit sessions, health workers and managers identified substandard care factors. Resulting recommendations were implemented and followed up. Feedback was given during subsequent sessions. A linear regression analysis was performed on facility-based severe maternal complications. During the two-year study period, 386 women were included: 46 died and 340 sustained SAMM, giving a case fatality rate of 11.9%. Forty-five cases out of the 386 inclusions were audited in plenary with hospital staff. There was a reduction of 3.1 women with severe maternal complications per 1000 deliveries in the district health facilities, from 13.5 per 1000 deliveries in the beginning to 10.4 per 1000 deliveries at the end of the study period. The incidence of uterine rupture and major obstetric hemorrhage reduced considerably (from 3.5 to 0.2 and from 5.9 to 2.6 per 1000 facility deliveries respectively). CONCLUSIONS: Our findings indicate that audit and feedback have the potential to reduce serious maternal complications including maternal mortality. Complications like major hemorrhage and uterine rupture that require relatively straightforward intrapartum emergency management are easier to reduce than those which require uptake of improved antenatal care (eclampsia) or timely intravenous medication or HIV-treatment (peripartum infections)

    Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas

    Get PDF
    Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted to groups at high risk, such as pregnant women, or to periods of the year when the risk from malaria is greatest, can be an effective and cost effective malaria control tool and has fewer drawbacks. Intermittent preventive treatment, which involves administration of anti-malarials at fixed time points, usually when a subject is already in contact with the health services, for example attendance at an antenatal or vaccination clinic, is less demanding of resources than chemoprophylaxis and is now recommended for the prevention of malaria in pregnant women and infants resident in areas with medium or high levels of malaria transmission. Intermittent preventive treatment in older children, probably equivalent to targeted chemoprophylaxis, is also highly effective but requires the establishment of a specific delivery system. Recent studies have shown that community volunteers can effectively fill this role. Mass drug administration probably has little role to play in control of mortality and morbidity from malaria but may have an important role in the final stages of an elimination campaign

    Increase in EPI vaccines coverage after implementation of intermittent preventive treatment of malaria in infant with Sulfadoxine -pyrimethamine in the district of Kolokani, Mali: Results from a cluster randomized control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even though the efficacy of Intermittent Preventive Treatment in infants (IPTi) with Sulfadoxine-Pyrimethamine (SP) against clinical disease and the absence of its interaction with routine vaccines of the Expanded Immunization Programme (EPI) have been established, there are still some concerns regarding the addition of IPTi, which may increase the work burden and disrupt the routine EPI services especially in Africa where the target immunization coverage remains to be met. However IPTi may also increase the adherence of the community to EPI services and improve EPI coverage, once the benefice of strategy is perceived.</p> <p>Methods</p> <p>To assess the impact of IPTi implementation on the coverage of EPI vaccines, 22 health areas of the district of Kolokani were randomized at a 1:1 ratio to either receive IPTi-SP or to serve as a control. The EPI vaccines coverage was assessed using cross-sectional surveys at baseline in November 2006 and after one year of IPTi pilot-implementation in December 2007.</p> <p>Results</p> <p>At baseline, the proportion of children of 9-23 months who were completely vaccinated (defined as children who received BGG, 3 doses of DTP/Polio, measles and yellow fever vaccines) was 36.7% (95% CI 25.3% -48.0%). After one year of implementation of IPTi-SP using routine health services, the proportion of children completely vaccinated rose to 53.8% in the non intervention zone and 69.5% in the IPTi intervention zone (P <0.001).</p> <p>The proportion of children in the target age groups who received IPTi with each of the 3 vaccinations DTP2, DTP3 and Measles, were 89.2% (95% CI 85.9%-92.0%), 91.0% (95% CI 87.6% -93.7%) and 77.4% (95% CI 70.7%-83.2%) respectively. The corresponding figures in non intervention zone were 2.3% (95% CI 0.9% -4.7%), 2.6% (95% CI 1.0% -5.6%) and 1.7% (95% CI 0.4% - 4.9%).</p> <p>Conclusion</p> <p>This study shows that high coverage of the IPTi can be obtained when the strategy is implemented using routine health services and implementation results in a significant increase in coverage of EPI vaccines in the district of Kolokani, Mali.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00766662">NCT00766662</a></p

    Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors

    Get PDF
    [EN] Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA beta-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited Delta NHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.This work was supported by Ministerio de Economia y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (FEDER) and Universitat Jaume I through grants No. AGL201676574-R, UJI-B2016-23/UJI-B2016-24 to A.G-C. and V.A. and MINECO, FEDER and Consejo Superior de Investigaciones Cientificas (CSIC) through grant BIO2014-52537-R to P.L.R. S.I.Z. and M.M. were supported by predoctoral grants from Universitat Jaume I and Generalitat Valenciana, respectively. M.G.G. was recipient of a "JAE-DOC" contract from the CSIC. Mass spectrometry analyses were performed at the central facilities (Servei Central d'Instrumentacio Cientifica, SCIC) of Universitat Jaume I.Arbona, V.; Zandalinas, SI.; Manzi, M.; González Guzmán, M.; Rodríguez Egea, PL.; Gómez-Cadenas, A. (2017). Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Molecular Biology. 93(6):623-640. https://doi.org/10.1007/s11103-017-0587-7S623640936Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59:2717–2733. doi: 10.1093/jxb/ern138Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio G, Rodriguez PL (2012) Selective inhibition of clade a phosphatases type 2 C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980. doi: 10.1104/pp.111.188623Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio G, Fernandez M, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:491–931. doi: 10.1104/pp.112.208678Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250. doi: 10.1007/s00344-008-9051-xArbona V, López-climent MF, Pérez-Clemente RM, Gómez-cadenas A (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66:135–142. doi: 10.1016/j.envexpbot.2008.12.011Argamasilla R, Gómez-Cadenas A, Arbona V (2013) Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Growth Regul 33:169–180. doi: 10.1007/s00344-013-9359-zBaron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi: 10.1016/j.plantsci.2012.03.001Benschop JJ, Millenaar FF, Smeets ME, Van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143:1013–1023Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916. doi: 10.1105/tpc.112.098277De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. doi: 10.1111/j.1399-3054.2012.01659.xDupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, Holdsworth M, Cutler SR, Rodriguez PL, Márquez JA (2011) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184. doi: 10.1038/emboj.2011.294Finkelstein RR, Rock CD (2002) Abscisic Acid biosynthesis and response. Arabidopsis Book 1:e0058. doi: 10.1199/tab.0058Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111:5741–5746. doi: 10.1073/pnas.1322085111Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427. doi: 10.1105/tpc.110.080325Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez M a, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:1–14. doi: 10.1093/jxb/eru219González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846. doi: 10.1105/tpc.002477.developmentHsu F-C, Chou M-Y, Peng H-P, Chou S-J, Shih M-C (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6:e28888. doi: 10.1371/journal.pone.0028888Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic Acid 8-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 860:849–860. doi: 10.1104/pp.118.3.849Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108. doi: 10.1093/jxb/ers326Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi: 10.1111/j.1365-3040.2011.02426.xLiu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589. doi: 10.1111/pbi.12162Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8. doi: 10.1093/pcp/pcs185Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107. doi: 10.1104/pp.106.079475.1Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110:12132–12137. doi: 10.1073/pnas.1305919110Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502. doi: 10.1111/j.1365-313X.2006.02701.xRitchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645. doi: 10.1016/j.plaphy.2011.03.003Romero P, Lafuente MT, Rodrigo MJ (2012a) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945Romero P, Rodrigo MJ, Alférez F, Ballester A-R, González-Candelas L, Zacarías L, Lafuente MT (2012b) Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. J Exp Bot 63:2753–2767. doi: 10.1093/jxb/err461Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S-I, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298. doi: 10.1093/pcp/pcm003Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11. doi: 10.1016/j.plantsci.2010.11.014Schroeder JI, Nambara E (2006) A quick release mechanism for abscisic acid. Cell 126:1023–1025. doi: 10.1016/j.cell.2006.09.001Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632. doi: 10.1093/jxb/erq446Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137. doi: 10.1626/pps.17.131Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35. doi: 10.1111/j.1365-313X.2009.04025.xTanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613. doi: 10.1111/j.1365-313X.2012.04901.xValdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418. doi: 10.1007/s11103-012-9956-4Weng J-K, Ye M, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603. doi: 10.1111/j.1365-3040.2009.02064.xYoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21C:133–139. doi: 10.1016/j.pbi.2014.07.009Zhao Y, Xing L, Wang X, Hou Y-H, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683. doi: 10.1007/s11103-008-9298-

    Costs and cost-effectiveness of malaria control interventions - a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control and elimination of malaria requires expanded coverage of and access to effective malaria control interventions such as insecticide-treated nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment (IPT), diagnostic testing and appropriate treatment. Decisions on how to scale up the coverage of these interventions need to be based on evidence of programme effectiveness, equity and cost-effectiveness.</p> <p>Methods</p> <p>A systematic review of the published literature on the costs and cost-effectiveness of malaria interventions was undertaken. All costs and cost-effectiveness ratios were inflated to 2009 USD to allow comparison of the costs and benefits of several different interventions through various delivery channels, across different geographical regions and from varying costing perspectives.</p> <p>Results</p> <p>Fifty-five studies of the costs and forty three studies of the cost-effectiveness of malaria interventions were identified, 78% of which were undertaken in sub-Saharan Africa, 18% in Asia and 4% in South America. The median financial cost of protecting one person for one year was 2.20(range2.20 (range 0.88-9.54)forITNs,9.54) for ITNs, 6.70 (range 2.222.22-12.85) for IRS, 0.60(range0.60 (range 0.48-1.08)forIPTininfants,1.08) for IPT in infants, 4.03 (range 1.251.25-11.80) for IPT in children, and 2.06(range2.06 (range 0.47-3.36)forIPTinpregnantwomen.Themedianfinancialcostofdiagnosingacaseofmalariawas3.36) for IPT in pregnant women. The median financial cost of diagnosing a case of malaria was 4.32 (range 0.340.34-9.34). The median financial cost of treating an episode of uncomplicated malaria was 5.84(range5.84 (range 2.36-23.65)andthemedianfinancialcostoftreatinganepisodeofseveremalariawas23.65) and the median financial cost of treating an episode of severe malaria was 30.26 (range 15.6415.64-137.87). Economies of scale were observed in the implementation of ITNs, IRS and IPT, with lower unit costs reported in studies with larger numbers of beneficiaries. From a provider perspective, the median incremental cost effectiveness ratio per disability adjusted life year averted was 27(range27 (range 8.15-110)forITNs,110) for ITNs, 143 (range 135135-150) for IRS, and 24(range24 (range 1.08-$44.24) for IPT.</p> <p>Conclusions</p> <p>A transparent evidence base on the costs and cost-effectiveness of malaria control interventions is provided to inform rational resource allocation by donors and domestic health budgets and the selection of optimal packages of interventions by malaria control programmes.</p

    From strategy development to routine implementation: the cost of Intermittent Preventive Treatment in Infants for malaria control

    Get PDF
    BACKGROUND\ud \ud Achieving the Millennium Development Goals for health requires a massive scaling-up of interventions in Sub Saharan Africa. Intermittent Preventive Treatment in infants (IPTi) is a promising new tool for malaria control. Although efficacy information is available for many interventions, there is a dearth of data on the resources required for scaling up of health interventions.\ud \ud METHOD\ud \ud We worked in partnership with the Ministry of Health and Social Welfare (MoHSW) to develop an IPTi strategy that could be implemented and managed by routine health services. We tracked health system and other costs of (1) developing the strategy and (2) maintaining routine implementation of the strategy in five districts in southern Tanzania. Financial costs were extracted and summarized from a costing template and semi-structured interviews were conducted with key informants to record time and resources spent on IPTi activities.\ud \ud RESULTS\ud \ud The estimated financial cost to start-up and run IPTi in the whole of Tanzania in 2005 was US1,486,284.StartupcostsofUS1,486,284. Start-up costs of US36,363 were incurred at the national level, mainly on the development of Behaviour Change Communication (BCC) materials, stakeholders' meetings and other consultations. The annual running cost at national level for intervention management and monitoring and drug purchase was estimated at US459,096.StartupcostsatthedistrictlevelwereUS459,096. Start-up costs at the district level were US7,885 per district, mainly expenditure on training. Annual running costs were US$170 per district, mainly for printing of BCC materials. There was no incremental financial expenditure needed to deliver the intervention in health facilities as supplies were delivered alongside routine vaccinations and available health workers performed the activities without working overtime. The economic cost was estimated at 23 US cents per IPTi dose delivered.\ud \ud CONCLUSION\ud \ud The costs presented here show the order of magnitude of expenditures needed to initiate and to implement IPTi at national scale in settings with high Expanded Programme on Immunization (EPI) coverage. The IPTi intervention appears to be affordable even within the budget constraints of Ministries of Health of most sub-Saharan African countries
    corecore