257 research outputs found

    Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis

    Get PDF
    INTRODUCTION: Rheumatoid arthritis (RA) is associated with an increased production of a range of cytokines including tumour necrosis factor (TNF)-α and interleukin (IL)-1, which display potent proinflammatory actions that are thought to contribute to the pathogenesis of the disease. Although TNF-α seems to be the major cytokine in the inflammatory process, IL-1 is the key mediator with regard to cartilage and bone destruction. Apart from direct blockade of IL-1/TNF, regulation can be exerted at the level of modulatory cytokines such as IL-4 and IL-10. IL-4 is a pleiotropic T-cell derived cytokine that can exert either suppressive or stimulatory effects on different cell types, and was originally identified as a B-cell growth factor and regulator of humoral immune pathways. IL-4 is produced by activated CD4(+) T cells and it promotes the maturation of Th2 cells. IL-4 stimulates proliferation, differentiation and activation of several cell types, including fibroblasts, endothelial cells and epithelial cells. IL-4 is also known to be a potent anti-inflammatory cytokine that acts by inhibiting the synthesis of proinflammatory cytokines such as IL-1, TNF-α, IL-6, IL-8 and IL-12 by macrophages and monocytes. Moreover, IL-4 stimulates the synthesis of several cytokine inhibitors such as interleukin-1 receptor antagonist (IL-1Ra), soluble IL-1-receptor type II and TNF receptors IL-4 suppresses metalloproteinase production and stimulates tissue inhibitor of metalloproteinase-1 production in human mononuclear phagocytes and cartilage explants, indicating a protective effect of IL-4 towards extracellular matrix degradation. Furthermore, IL-4 inhibits both osteoclast activity and survival, and thereby blocks bone resorption in vitro. Of great importance is that IL-4 could not be detected in synovial fluid or in tissues. This absence of IL-4 in the joint probably contributes to the disturbance in the Th1/Th2 balance in chronic RA. Collagen-induced arthritis (CIA) is a widely used model of arthritis that displays several features of human RA. Recently it was demonstrated that the onset of CIA is under stringent control of IL-4 and IL-10. Furthermore, it was demonstrated that exposure to IL-4 during the immunization stage reduced onset and severity of CIA. However, after cessation of IL-4 treatment disease expression increased to control values. AIMS: Because it was reported that IL-4 suppresses several proinflammatory cytokines and matrix degrading enzymes and upregulates inhibitors of both cytokines and catabolic enzymes, we investigated the tissue protective effect of systemic IL-4 treatment using established murine CIA as a model. Potential synergy of low dosages of anti-inflammatory glucocorticosteroids and IL-4 was also evaluated. METHODS: DBA-1J/Bom mice were immunized with bovine type II collagen and boosted at day 21. Mice with established CIA were selected at day 28 after immunization and treated for days with IL-4, prednisolone, or combinations of prednisolone and IL-4. Arthritis score was monitored visually. Joint pathology was evaluated by histology, radiology and serum cartilage oligomeric matrix protein (COMP). In addition, serum levels of IL-1Ra and anticollagen antibodies were determined. RESULTS: Treatment of established CIA with IL-4 (1 μg/day) resulted in suppression of disease activity as depicted in Figure 1. Of great interest is that, although 1 μg/day IL-4 had only a moderate effect on the inflammatory component of the disease activity, it strongly reduced cartilage pathology, as determined by histological examination (Fig. 1). Moreover, serum COMP levels were significantly reduced, confirming decreased cartilage involvement. In addition, both histological and radiological analysis showed that bone destruction was prevented (Fig. 1). Systemic IL-4 administration increased serum IL-1Ra levels and reduced anticollagen type II antibody levels. Treatment with low-dose IL-4 (0.1 μg/day) was ineffective in suppressing disease score, serum COMP or joint destruction. Synergistic suppression of both arthritis severity and COMP levels was noted when low-dose IL-4 was combined with prednisolone (0.05 mg/kg/day), however, which in itself was not effective. DISCUSSION: In the present study, we demonstrate that systemic IL-4 treatment ameliorates disease progression of established CIA. Although clinical disease progression was only arrested and not reversed, clear protection against cartilage and bone destruction was noted. This is in accord with findings in both human RA and animal models of RA that show that inflammation and tissue destruction sometimes are uncoupled processes. Of great importance is that, although inflammation was still present, strong reduction in serum COMP was found after exposure to IL-4. This indicated that serum COMP levels reflected cartilage damage, although a limited contribution of the inflamed synovium cannot be excluded. Increased serum IL-1Ra level (twofold) was found after systemic treatment with IL-4, but it is not likely that this could explain the suppression of CIA. We and others have reported that high dosages of IL-1Ra are needed for marked suppression of CIA. As reported previously, lower dosages of IL-4 did not reduce clinical disease severity of established CIA. Of importance is that combined treatment of low dosages of IL-4 and IL-10 appeared to have more potent anti-inflammatory effects, and markedly protected against cartilage destruction. Improved anti-inflammatory effect was achieved with IL-4/prednisolone treatment. In addition, synergistic effects were found for the reduction of cartilage and bone destruction. This indicates that systemic IL-4/prednisolone treatment may provide a cartilage and bone protective therapy for human RA

    Cross-laboratory evaluation of multiplex bead assays including independent common reference standards for immunological monitoring of observational and interventional human studies

    Get PDF
    © 2018 van Meijgaarden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background Multiplex assays are increasingly applied to analyze multicomponent signatures of human immune responses, including the dynamics of cytokine and chemokine production, in observational as well as interventional studies following treatment or vaccination. However, relatively limited information is available on the performance of the different available multiplex kits, and comparative evaluations addressing this important issue are lacking. Study design To fill this knowledge gap we performed a technical comparison of multiplex bead assays from 4 manufacturers, each represented by 3 different lots, and with the assays performed by 3 different laboratories. To cross compare kits directly, spiked samples, biological samples and a newly made reference standard were included in all assays. Analyses were performed on 324 standard curves to allow for evaluation of the quality of the standard curves and the subsequent interpretation of biological specimens. Results Manufacturer was the factor which contributed most to the observed variation whereas variation in lots, laboratory or type of detection reagent contributed minimally. Inclusion of a common reference standard allowed us to overcome observed differences in cytokine and chemokine levels between manufacturers. Conclusions We strongly recommend using multiplex assays from the same manufacturer within a single study and across studies that are likely to compare results in a quantitative manner. Incorporation of common reference standards, and application of the same analysis method in assays can overcome many analytical biases and thus could bridge comparison of independent immune profiling (e.g. vaccine immunogenicity) studies. With these recommendations taken into account, the multiplex bead assays performed as described here are useful tools in capturing complex human immune-signatures in observational and interventional studies.FP7 EURIPRED (FP7-INFRA-2012 Grant Agreement No. 312661 to HMcS, HMD, THMO, MMH) and EC HORIZON2020 TBVAC2020 (Grant Agreement No. 643381EC to HMcS, HMD, THMO)

    Locomotion and muscle mass measures in a murine model of collagen-induced arthritis

    Get PDF
    Background: Rheumatoid arthritis (RA) is characterized by chronic poly-arthritis, synovial hyperplasia, erosive synovitis, progressive cartilage and bone destruction accompanied by a loss of body cell mass. This loss of cell mass, known as rheumatoid cachexia, predominates in the skeletal muscle and can in part be explained by a decreased physical activity. The murine collagen induced arthritis (CIA) model has been proven to be a useful model in RA research since it shares many immunological and pathological features with human RA. The present study explored the interactions between arthritis development, locomotion and muscle mass in the CIA model. Methods: CIA was induced in male DBA/1 mice. Locomotion was registered at different time points by a camera and evaluated by a computerized tracing system. Arthritis severity was detected by the traditionally used semi-quantitative clinical scores. The muscle mass of the hind-legs was detected at the end of the study by weighing. A methotrexate (MTX) intervention group was included to study the applicability of the locomotion and muscle mass for testing effectiveness of interventions in more detail. Results: There is a strong correlation between clinical arthritis and locomotion. The correlations between muscle mass and locomotion or clinical arthritis were less pronounced. MTX intervention resulted in an improvement of disease severity accompanied by an increase in locomotion and muscle mass. Conclusion: The present data demonstrate that registration of locomotion followed by a computerized evaluation of the movements is a simple non invasive quantitative method to define disease severity and evaluate effectiveness of therapeutic agents in the CIA model.

    Immunological Monitoring of Renal Transplant Recipients to Predict Acute Allograft Rejection Following the Discontinuation of Tacrolimus

    Get PDF
    Contains fulltext : 69863.pdf (publisher's version ) (Open Access)BACKGROUND: Transplant patients would benefit from reduction of immunosuppression providing that graft rejection is prevented. We have evaluated a number of immunological markers in blood of patients in whom tacrolimus was withdrawn after renal transplantation. The alloreactive precursor frequency of CD4+ and CD8+ T cells, the frequency of T cell subsets and the functional capacity of CD4+CD25+FoxP3+ regulatory T cells (Treg) were analyzed before transplantation and before tacrolimus reduction. In a case-control design, the results were compared between patients with (n = 15) and without (n = 28) acute rejection after tacrolimus withdrawal. PRINCIPAL FINDINGS: Prior to tacrolimus reduction, the ratio between memory CD8+ T cells and Treg was higher in rejectors compared to non-rejectors. Rejectors also had a higher ratio between memory CD4+ T cells and Treg, and ratios <20 were only observed in non-rejectors. Between the time of transplantation and the start of tacrolimus withdrawal, an increase in naive T cell frequencies and a reciprocal decrease of effector T cell percentages was observed in rejectors. The proportion of Treg within the CD4+ T cells decreased after transplantation, but anti-donor regulatory capacity of Treg remained unaltered in rejectors and non-rejectors. CONCLUSIONS: Immunological monitoring revealed an association between acute rejection following the withdrawal of tacrolimus and 1) the ratio of memory T cells and Treg prior to the start of tacrolimus reduction, and 2) changes in the distribution of naive, effector and memory T cells over time. Combination of these two biomarkers allowed highly specific identification of patients in whom immunosuppression could be safely reduced

    Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts

    Get PDF
    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by predators escaping. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory-”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes

    Homocysteine, vitamin B12 and folate levels in premature coronary artery disease

    Get PDF
    BACKGROUND: Hyperhomocysteinemia is known as an independent risk factor of atherosclerosis, but the probable role of hyperhomocysteinemia in premature Coronary Artery Disease (CAD) is not well studied. The aim of this study was to assess the role of hyperhomocysteinemia, folate and Vitamin B12 deficiency in the development of premature CAD. METHODS: We performed an analytical case-control study on 294 individuals under 45 years (225 males and 69 females) who were admitted for selective coronary angiography to two centers in Tehran. RESULTS: After considering the exclusion criteria, a total number of 225 individuals were enrolled of which 43.1% had CAD. The mean age of participants was 39.9 +/- 4.3 years (40.1 +/- 4.2 years in males and 39.4 +/- 4.8 years in females). Compared to the control group, the level of homocysteine measured in the plasma of the male participants was significantly high (14.9 +/- 1.2 versus 20.3 +/- 1.9 micromol/lit, P = 0.01). However there was no significant difference in homocysteine level of females with and without CAD (11.8 +/- 1.3 versus 11.5 ± 1.1 micromol/lit, P = 0.87). Mean plasma level of folic acid and vitamin B12 in the study group were 6.3 +/- 0.2 and 282.5 +/- 9.1 respectively. Based on these findings, 10.7% of the study group had folate deficiency while 26.6% had Vitamin B12 deficiency. Logistic regression analysis for evaluating independent CAD risk factors showed hyperhomocysteinemia as an independent risk factor for premature CAD in males (OR = 2.54 0.95% CI 1.23 to 5.22, P = 0.01). Study for the underlying causes of hyperhomocysteinemia showed that male gender and Vitamin B12 deficiency had significant influence on incidence of hyperhomocysteinemia. CONCLUSION: We may conclude that hyperhomocysteinemia is an independent risk factor for CAD in young patients (bellow 45 years old) – especially in men -and vitamin B12 deficiency is a preventable cause of hyperhomocysteinemia

    Exploring dietitians' salient beliefs about shared decision-making behaviors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shared decision making (SDM), a process by which health professionals and patients go through the decision-making process together to agree on treatment, is a promising strategy for promoting diet-related decisions that are informed and value based and to which patients adhere well. The objective of the present study was to identify dietitians' salient beliefs regarding their exercise of two behaviors during the clinical encounter, both of which have been deemed essential for SDM to take place: (1) presenting patients with all dietary treatment options for a given health condition and (2) helping patients clarify their values and preferences regarding the options.</p> <p>Methods</p> <p>Twenty-one dietitians were allocated to four focus groups. Facilitators conducted the focus groups using a semistructured interview guide based on the Theory of Planned Behavior. Discussions were audiotaped, transcribed verbatim, coded, and analyzed with NVivo8 (QSR International, Cambridge, MA) software.</p> <p>Results</p> <p>Most participants stated that better patient adherence to treatment was an advantage of adopting the two SDM behaviors. Dietitians identified patients, physicians, and the multidisciplinary team as normative referents who would approve or disapprove of their adoption of the SDM behaviors. The most often reported barriers and facilitators for the behaviors concerned patients' characteristics, patients' clinical situation, and time.</p> <p>Conclusions</p> <p>The implementation of SDM in nutrition clinical practice can be guided by addressing dietitians' salient beliefs. Identifying these beliefs also provides the theoretical framework needed for developing a quantitative survey questionnaire to further study the determinants of dietitians' adoption of SDM behaviors.</p

    Decrease of CD68 Synovial Macrophages in Celastrol Treated Arthritic Rats

    Get PDF
    Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1β and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA).FCT fellowship: (SFRH/BPD/92860/2013)

    Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial

    Get PDF
    Aims/hypothesis To determine whether 6 weeks of daily, moderate alcohol consumption increases expression of the gene encoding adiponectin (ADIPOQ) and plasma levels of the protein, and improves insulin sensitivity in postmenopausal women. Methods In a randomised, open-label, crossover trial conducted in the Netherlands, 36 apparently healthy postmenopausal women who were habitual alcohol consumers, received 250 ml white wine (~25 g alcohol/day) or 250 ml of white grape juice (control) daily during dinner for 6 weeks. Randomisation to treatment allocation occurred according to BMI. Insulin sensitivity and ADIPOQ mRNA and plasma adiponectin levels were measured at the end of both periods. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). Levels of ADIPOQ mRNA in subcutaneous adipose tissue were determined by RT-PCR. Results All subjects completed the study. Six weeks of white wine consumption reduced fasting insulin (mean¿±¿SEM 40.0¿±¿3.4 vs 46.5¿±¿3.4 pmol/l; p
    corecore