282 research outputs found

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure

    Lessons from bright-spots for advancing knowledge exchange at the interface of marine science and policy

    Get PDF
    Evidence-informed decision-making is in increasing demand given growing pressures on marine environments. A way to facilitate this is by knowledge exchange among marine scientists and decision-makers. While many barriers are reported in the literature, there are also examples whereby research has successfully informed marine decision-making (i.e., 'bright-spots'). Here, we identify and analyze 25 bright-spots from a wide range of marine fields, contexts, and locations to provide insights into how to improve knowledge exchange at the interface of marine science and policy. Through qualitative surveys we investigate what initiated the bright-spots, their goals, and approaches to knowledge exchange. We also seek to identify what outcomes/impacts have been achieved, the enablers of success, and what lessons can be learnt to guide future knowledge exchange efforts. Results show that a diversity of approaches were used for knowledge exchange, from consultative engagement to genuine knowledge co-production. We show that diverse successes at the interface of marine science and policy are achievable and include impacts on policy, people, and governance. Such successes were enabled by factors related to the actors, processes, support, context, and timing. For example, the importance of involving diverse actors and managing positive relationships is a key lesson for success. However, enabling routine success will require: 1) transforming the ways in which we train scientists to include a greater focus on interpersonal skills, 2) institutionalizing and supporting knowledge exchange activities in organizational agendas, 3) conceptualizing and implementing broader research impact metrics, and 4) transforming funding mechanisms to focus on need-based interventions, impact planning, and an acknowledgement of the required time and effort that underpin knowledge exchange activities

    Defensive coping and health-related quality of life in chronic kidney disease: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coping with the stresses of chronic disease is considered as a key factor in the perceived impairment of health related quality of life (HRQL). Little is known though about these associations in chronic kidney disease (CKD). The present study aimed to investigate the relationship of defensive coping and HRQL among patients in different CKD stages, after adjusting for psychological distress, sociodemographic and disease-related variables.</p> <p>Methods</p> <p>The sample consisted of 98 CKD patients, attending a university nephrology department. Seventy-nine (79) pre-dialysis patients of disease stages 3 to 4 and 19 dialysis patients were included. HRQL was assessed by the 36-item Short-Form health survey (SF-36), defensive coping by the Rationality/Emotional Defensiveness (R/ED) scale of the Lifestyle Defense Mechanism Inventory (LDMI) and psychological distress by the depression and anxiety scales of the revised Hopkins Symptom CheckList (SCL-90-R). Regression analyses were carried out to examine the association between SF-36 dimensions and defensive coping style.</p> <p>Results</p> <p>Patients on dialysis had worse scores on SF-36 scales measuring physical aspects of HRQL. In the fully adjusted analysis, a higher defensive coping score was significantly associated with a lower score on the mental component summary (MCS) scale of the SF-36 (worse mental health). In contrast, a higher defensive score showed a small positive association with the physical component summary (PCS) scale of the SF-36 (better health), but this was marginally significant.</p> <p>Conclusions</p> <p>The results provided evidence that emotional defensiveness as a coping style tends to differentially affect the mental and the physical component of HRQL in CKD. Clinicians should be aware of the effects of long-term denial and could examine the possibility of screening for defensive coping and depression in recently diagnosed CKD patients with the aim to improve both physical and mental health.</p

    Clinical Audits in Outpatient Clinics for Chronic Obstructive Pulmonary Disease: Methodological Considerations and Workflow

    Get PDF
    Objectives: Previous clinical audits for chronic obstructive pulmonary disease (COPD) have provided valuable information on the clinical care delivered to patients admitted to medical wards because of COPD exacerbations. However, clinical audits of COPD in an outpatient setting are scarce and no methodological guidelines are currently available. Based on our previous experience, herein we describe a clinical audit for COPD patients in specialized outpatient clinics with the overall goal of establishing a potential methodological workflow.Methods: A pilot clinical audit of COPD patients referred to respiratory outpatient clinics in the region of Andalusia, Spain (over 8 million inhabitants), was performed. The audit took place between October 2013 and September 2014, and 10 centers (20% of all public hospitals) were invited to participate. Cases with an established diagnosis of COPD based on risk factors, clinical symptoms, and a post-bronchodilator FEV1/FVC ratio of less than 0.70 were deemed eligible. The usefulness of formally scheduled regular follow-up visits was assessed. Two different databases (resources and clinical database) were constructed. Assessments were planned over a year divided by 4 three-month periods, with the goal of determining seasonal-related changes. Exacerbations and survival served as the main endpoints.Conclusions: This paper describes a methodological framework for conducting a clinical audit of COPD patients in an outpatient setting. Results from such audits can guide health information systems development and implementation in real-world settings.This study was financially supported by an unrestricted grant from Laboratorios Menarini, SA (Barcelona, Spain)

    Mimicry and well known genetic friends: molecular diagnosis in an Iranian cohort of suspected Bartter syndrome and proposition of an algorithm for clinical differential diagnosis.

    Get PDF
    BACKGROUND: Bartter Syndrome is a rare, genetically heterogeneous, mainly autosomal recessively inherited condition characterized by hypochloremic hypokalemic metabolic alkalosis. Mutations in several genes encoding for ion channels localizing to the renal tubules including SLC12A1, KCNJ1, BSND, CLCNKA, CLCNKB, MAGED2 and CASR have been identified as underlying molecular cause. No genetically defined cases have been described in the Iranian population to date. Like for other rare genetic disorders, implementation of Next Generation Sequencing (NGS) technologies has greatly facilitated genetic diagnostics and counseling over the last years. In this study, we describe the clinical, biochemical and genetic characteristics of patients from 15 Iranian families with a clinical diagnosis of Bartter Syndrome. RESULTS: Age range of patients included in this study was 3 months to 6 years and all patients showed hypokalemic metabolic alkalosis. 3 patients additionally displayed hypercalciuria, with evidence of nephrocalcinosis in one case. Screening by Whole Exome Sequencing (WES) and long range PCR revealed that 12/17 patients (70%) had a deletion of the entire CLCNKB gene that was previously identified as the most common cause of Bartter Syndrome in other populations. 4/17 individuals (approximately 25% of cases) were found to suffer in fact from pseudo-Bartter syndrome resulting from congenital chloride diarrhea due to a novel homozygous mutation in the SLC26A3 gene, Pendred syndrome due to a known homozygous mutation in SLC26A4, Cystic Fibrosis (CF) due to a novel mutation in CFTR and apparent mineralocorticoid excess syndrome due to a novel homozygous loss of function mutation in HSD11B2 gene. 1 case (5%) remained unsolved. CONCLUSIONS: Our findings demonstrate deletion of CLCNKB is the most common cause of Bartter syndrome in Iranian patients and we show that age of onset of clinical symptoms as well as clinical features amongst those patients are variable. Further, using WES we were able to prove that nearly 1/4 patients in fact suffered from Pseudo-Bartter Syndrome, reversing the initial clinical diagnosis with important impact on the subsequent treatment and clinical follow up pathway. Finally, we propose an algorithm for clinical differential diagnosis of Bartter Syndrome

    Logistics service provider selection for disaster preparation: a socio-technical systems perspective

    Get PDF
    Since 1990s, the world has seen a lot of advances in providing humanitarian aid through sophisticated logistics operations. The current consensus seems to be that humanitarian relief organizations (HROs) can improve their relief operations by collaborating with logistics service providers (CLSPs) in the commercial sector. The question remains: how can HROs select the most appropriate CLSP for disaster preparation? Despite its practical significance, no explicit effort has been done to identify the criteria/factors in prioritising and selecting a CLSP for disaster relief. The present study aims to address this gap by consolidating the list of criteria from a socio-technical systems (STS) perspective. Then, to handle the interdependence among the criteria derived from the STS, we develop a hybrid multi-criteria decision making model for CLSP selection in the disaster preparedness stage. The proposed model is then evaluated by a real-life case study, providing insights into the decision-makers in both HROs and CLSPs

    Microwave assisted solvent free synthesis of 1,3-diphenylpropenones

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>1,3-Diphenylpropenones (chalcones) are well known for their diverse array of bioactivities. Hydroxyl group substituted chalcones are the main precursor in the synthesis of flavonoids. Till date various methods have been developed for the synthesis of these very interesting molecules. Continuing our efforts for the development of simple, eco-friendly and cost-effective methodologies, we report here a solvent free condensation of aryl ketones and aldehydes using iodine impregnated alumina under microwave activation. This new protocol has been applied to a variety of substituted aryl carbonyls with excellent yield of substituted 1,3-diphenylpropenones.</p> <p>Results</p> <p>Differently substituted chalcones were synthesized using iodine impregnated neutral alumina as catalyst in 79-95% yield in less than 2 minutes time under microwave activation without using any solvent. The reaction was studied under different catalytic conditions and it was found that molecular iodine supported over neutral alumina gives the best yield. The otherwise difficult single step condensation of hydroxy substituted aryl carbonyls is an attractive feature of this protocol to obtain polyhydroxychalcones in excellent yields. In order to find out the general applicability of this new endeavor it was successfully applied for the synthesis of 15 different chalcones including highly bioactive prenylated hydroxychalcone xanthohumol.</p> <p>Conclusion</p> <p>A new, simple and solvent free method was developed for the synthesis of substituted chalcones in environmentally benign way. The mild reaction conditions, easy work-up, clean reaction profiles render this approach as an interesting alternative to the existing methods.</p

    In silico design of novel probes for the atypical opioid receptor MRGPRX2

    Get PDF
    The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small molecule MRGPRX2 agonists, selective nanomolar potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found many opioid compounds activated MRGPRX2, including (−)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan and the prodynorphin-derived peptides, dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573, which represents a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases, and an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573

    Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products

    Get PDF
    A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer—i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO(2)) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(−1) cm(−2), and limit of detection of 1.5 μM. The apparent Michaelis–Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-016-9612-y) contains supplementary material, which is available to authorized users
    corecore