178 research outputs found

    Predicting change in quality of life from age 79 to 90 in the Lothian Birth Cohort 1921

    Get PDF
    Purpose: Quality of life (QoL) decreases in very old age, and is strongly related to health outcomes and mortality. Understanding the predictors of QoL and change in QoL amongst the oldest old may suggest potential targets for intervention. This study investigated change in QoL from age 79 to 90 years in a group of older adults in Scotland, and identified potential predictors of that change. Method: Participants were members of the Lothian Birth Cohort 1921 who attended clinic visits at age 79 (n = 554) and 90 (n = 129). Measures at both time points included QoL (WHOQOL-BREF: four domains and two single items), anxiety and depression, objective health, functional ability, self-rated health, loneliness, and personality. Results: Mean QoL declined from age 79 to 90. Participants returning at 90 had scored significantly higher at 79 on most QoL measures, and exhibited better objective health and functional ability, and lower anxiety and depression than non-returners. Hierarchical multiple regression models accounted for 20.3–56.3% of the variance in QoL at age 90. Baseline QoL was the strongest predictor of domain scores (20.3–35.6% variance explained), suggesting that individual differences in QoL judgements remain largely stable. Additional predictors varied by the QoL domain and included self-rated health, loneliness, and functional and mood decline between age 79 and 90 years. Conclusions: This study has identified potential targets for interventions to improve QoL in the oldest old. Further research should address causal pathways between QoL and functional and mood decline, perceived health and loneliness

    Effect of temporary cements on the shear bond strength of luting cements

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)-based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. RESULTS: Means were (MPa): I - 3.80 (&plusmn;1.481); II - 5.24 (&plusmn;2.297); III - 6.98 (&plusmn;1.885); IV - 6.54 (&plusmn;1.459); V - 5.22 (&plusmn;2.465); VI - 4.48 (&plusmn;1.705); VII - 6.29 (&plusmn;2.280); VIII - 2.47 (&plusmn;2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2-based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyX TM ARC and RelyX TM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). CONCLUSION: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation

    Učinak topljivosti na kinetiku oslobađanja vodotopljivih i vodonetopljivih lijekova iz matriksnog sustava na bazi HPMC

    Get PDF
    The purpose of the present research work was to observe the effects of drug solubility on the release kinetics of water soluble verapamil hydrochloride and insoluble aceclofenac from polymer based matrix formulations. Matrix formulations were prepared by the direct compression method. The formulations were evaluated for various physical parameters. Along with the dynamics of water uptake and erosion, SEM and in vitro drug release of tablets were studied. Applying an exponential equation, it was found that the kinetics of soluble drug release followed anomalous non-Fickian diffusion transport whereas insoluble drug showed zero-order release. SEM study showed pore formation on the tablet surface that differed depending on drug solubility. t-Test pointed to a significant difference in the amount of both drugs released due to their difference in solubility. Solubility of the drug affects the kinetics and the mechanism of drug release.Cilj rada bio je praćenje učinka topljivosti na kinetiku oslobađanja vodotopljivog verapamil hidroklorida i netopljivog lijeka aceklofenaka iz matriksnih sustava na bazi hidrofilnog polimera. Matriksni sustavi pripravljeni su izravnom metodom kompresije. Uz ispitivanje uobičajenih fizikalnih svojstava, ispitivana je i dinamika primanja vode, te erozija, SEM i in vitro oslobađanje ljekovite tvari iz tableta. Primjenom eksponencijalne jednadĆŸbe utvrđeno je da mehanizam oslobađanja topljivih lijekova slijedi anomalni ne-Fickov difuzijski transport, dok netopljivi lijekovi slijede kinetiku nultog reda. SEM ispitivanja pokazala su pore na povrĆĄini matriksa ovisne o topljivosti ljekovite tvari. T-test ukazuje da količina oslobođenog lijeka značajno ovisi o njegovoj topljivosti. Topljivost lijeka ima značajan učinak na kinetiku i mehanizam oslobađanja

    Dissolution Enhancement and Formulation of Rapid-Release Lornoxicam Mini-Tablets

    Get PDF
    The aim was to enhance the dissolution of lornoxicam (LOR) and to produce mini-tablets with an optimised system to provide a rapid-release multi-particulate formulation. LOR systems were prepared through co-evaporation with either polyethylene glycol 6000 or PluronicÂź F-68 (PLU) and adsorption onto NeusilinÂź US2 alone or co-adsorption in the presence of different amounts of polysorbate 80. All systems were characterised by FT-IR, differential scanning calorimetry, X-ray diffraction, flowability and dissolution techniques. Mini-tablets were prepared using the system with the optimum dissolution profile and flowability. Tensile strengths, content uniformity and dissolution profiles of the mini-tablets were evaluated. The effects of different excipients and storage conditions on mini-tablet properties were also studied. The optimised rapid-release LOR mini-tablets were further evaluated for their in vivo pharmacokinetic profile. The co-evaporate of LOR with PLU showed significantly faster dissolution and superior flowability and was evaluated together with three directly compressible excipients (CellactoseÂź 80, StarLacÂź (STA) and EmcompressÂź) for mini-tablet formulation. The formulation with STA provided the optimum results in terms of tensile strength content uniformity and rapid drug release following a 3-month stability study and was selected for further in vivo evaluation. The pharmacokinetic profile indicated the potential of the mini-tablets achieving rapid release and increased absorption of LO

    Powder Compaction: Compression Properties of Cellulose Ethers

    Get PDF
    Effective development of matrix tablets requires a comprehensive understanding of different raw material attributes and their impact on process parameters. Cellulose ethers (CE) are the most commonly used pharmaceutical excipients in the fabrication of hydrophilic matrices. The innate good compression and binding properties of CE enable matrices to be prepared using economical direct compression (DC) techniques. However, DC is sensitive to raw material attributes, thus, impacting the compaction process. This article critically reviews prior knowledge on the mechanism of powder compaction and the compression properties of cellulose ethers, giving timely insight into new developments in this field

    Race at the margins: A Critical Race Theory perspective on race equality in UK planning.

    Get PDF
    Despite evidence of the growing ethnic diversity of British cities and its impact on urban governance, the issue of racial equality in UK planning remains marginal, at best, to mainstream planning activity. This paper uses Critical Race Theory (CRT) to consider the reasons why the ‘race’ and planning agenda continues to stall. CRT, it is argued, offers a compelling account of why changes in practice over time have been patchy at best, and have sometimes gone into reverse

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient
    • 

    corecore