9,863 research outputs found

    X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x

    Full text link
    Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS). The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3 and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were identified and they do not change with etching time. The Binding Energy of the Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a positive chemical shift in the core levels. On the other hand, analysis of Valence Band spectra showed that the contribution of the Nb 4d states slightly decreased while the contribution of the B 2p(pi) states increased as the boron content increased. As a consequence, the electronic and superconducting properties were substantially modified, in good agreement with band-structure calculations.Comment: 10 pages, 7 figures, 1 tabl

    Cosmic magnetic fields and dark energy in extended electromagnetism

    Get PDF
    We discuss an extended version of electromagnetism in which the usual gauge fixing term is promoted into a physical contribution that introduces a new scalar state in the theory. This new state can be generated from vacuum quantum fluctuations during an inflationary era and, on super-Hubble scales, gives rise to an effective cosmological constant. The value of such a cosmological constant coincides with the one inferred from observations as long as inflation took place at the electroweak scale. On the other hand, the new state also generates an effective electric charge density on sub-Hubble scales that produces both vorticity and magnetic fields with coherent lengths as large as the present Hubble horizon.Comment: 4 pages, 2 figures. Contribution to the proceedings of Spanish Relativity Meeting 2010, Granada, Spain, 6-10 September 201

    The Peierls substitution in an engineered lattice potential

    Full text link
    Artificial gauge fields open new possibilities to realize quantum many-body systems with ultracold atoms, by engineering Hamiltonians usually associated with electronic systems. In the presence of a periodic potential, artificial gauge fields may bring ultracold atoms closer to the quantum Hall regime. Here, we describe a one-dimensional lattice derived purely from effective Zeeman-shifts resulting from a combination of Raman coupling and radiofrequency magnetic fields. In this lattice, the tunneling matrix element is generally complex. We control both the amplitude and the phase of this tunneling parameter, experimentally realizing the Peierls substitution for ultracold neutral atoms.Comment: 6 pages, 5 figure

    The onset of solar cycle 24: What global acoustic modes are telling us

    Full text link
    We study the response of the low-degree, solar p-mode frequencies to the unusually extended minimum of solar surface activity since 2007. A total of 4768 days of observations collected by the space-based, Sun-as-a-star helioseismic GOLF instrument are analyzed. A multi-step iterative maximum-likelihood fitting method is applied to subseries of 365 days and 91.25 days to extract the p-mode parameters. Temporal variations of the l=0, 1, and 2 p-mode frequencies are then obtained from April 1996 to May 2009. While the p-mode frequency shifts are closely correlated with solar surface activity proxies during the past solar cycles, the frequency shifts of the l=0 and l=2 modes show an increase from the second half of 2007, when no significant surface activity is observable. On the other hand, the l=1 modes follow the general decreasing trend of the solar surface activity. The different behaviours between the l=0 and l=2 modes and the l=1 modes can be interpreted as different geometrical responses to the spatial distribution of the solar magnetic field beneath the surface of the Sun. The analysis of the low-degree, solar p-mode frequency shifts indicates that the solar activity cycle 24 started late 2007, despite the absence of activity on the solar surface.Comment: To be accepted by A&A (with minor revisions), 4 pages, 3 figures, 1 tabl

    Tailoring magnetic anisotropy in epitaxial half metallic La0.7Sr0.3MnO3 thin films

    Full text link
    We present a detailed study on the magnetic properties, including anisotropy, reversal fields, and magnetization reversal processes, of well characterized half-metallic epitaxial La0.7Sr0.3MnO3 (LSMO) thin films grown onto SrTiO3 (STO) substrates with three different surface orientations, i.e. (001), (110) and (1-18). The latter shows step edges oriented parallel to the [110] (in-plane) crystallographic direction. Room temperature high resolution vectorial Kerr magnetometry measurements have been performed at different applied magnetic field directions in the whole angular range. In general, the magnetic properties of the LSMO films can be interpreted with just the uniaxial term with the anisotropy axis given by the film morphology, whereas the strength of this anisotropy depends on both structure and film thickness. In particular, LSMO films grown on nominally flat (110)-oriented STO substrates presents a well defined uniaxial anisotropy originated from the existence of elongated in-plane [001]-oriented structures, whereas LSMO films grown on nominally flat (001)-oriented STO substrates show a weak uniaxial magnetic anisotropy with the easy axis direction aligned parallel to residual substrate step edges. Elongated structures are also found for LSMO films grown on vicinal STO(001) substrates. These films present a well-defined uniaxial magnetic anisotropy with the easy axis lying along the step edges and its strength increases with the LSMO thickness. It is remarkable that this step-induced uniaxial anisotropy has been found for LSMO films up to 120 nm thickness. Our results are promising for engineering novel half-metallic magnetic devices that exploit tailored magnetic anisotropy.Comment: 10 pages, 10 figures, 1 tabl

    A 3D geological model of Campo de Cartagena, SE Spain : Hydrogeological implications

    Get PDF
    Knowledge and understanding of geologic basins for hydrogeologic purposes requires an accurate 3D geological architecture representation. For model building, surface and subsurface data integration with the interpretation of geophysical survey and lithologic logs is needed. A methodology to reconstruct the geometric architecture of the sedimentary basin and relationships among stratigraphic formations, as well as to define hydrostratigraphic units, has been applied to the Campo de Cartagena Neogene formations. Data analysis included seismic reflection profiles and gravimetric data from oil exploration, electric resistivity surveys and 491 lithologic logs. The 3D model obtained from a close integration of stratigraphic and geophysical data was generated through a computerbased tool. It presents a common framework and a good starting point for hydrogeologic applications
    corecore