5,210 research outputs found

    Predicting the Configuration of Planetary System: KOI-152 Observed by Kepler

    Full text link
    The recent Kepler discovery of KOI-152 reveals a system of three hot super-Earth candidates that are in or near a 4:2:1 mean motion resonance. It is unlikely that they formed in situ, the planets probably underwent orbital migration during the formation and evolution process. The small semimajor axes of the three planets suggest that migration stopped at the inner edge of the primordial gas disk. In this paper we focus on the influence of migration halting mechanisms, including migration "dead zones", and inner truncation by the stellar magnetic field. We show that the stellar accretion rate, stellar magnetic field and the speed of migration in the proto-planetary disk are the main factors affecting the final configuration of KOI-152. Our simulations suggest that three planets may be around a star with low star accretion rate or with high magnetic field. On the other hand, slow type I migration, which decreases to one tenth of the linear analysis results, favors forming the configuration of KOI-152. Under such formation scenario, the planets in the system are not massive enough to open gaps in the gas disk. The upper limit of the planetary masses are estimated to be about 15, 1915,~19, and 24M24 M_\oplus, respectively. Our results are also indicative of the near Laplacian configurations that are quite common in planetary systems.Comment: 11 pages, 8 figures, accepted for publication in Ap

    Transit Timing Variation of Near-Resonance Planetary Pairs: Confirmation of Twelve Multiple Planet Systems

    Full text link
    We extract Transit Timing Variation (TTV) signals for 12 pairs of transiting planet candidates that are near first-order Mean Motion Resonances (MMR), using publicly available Kepler light curves (Q0-Q14). These pairs show significant sinusoidal TTVs with theoretically predicted periods, which demonstrate these planet candidates are orbiting and interacting in the same system. Although individual masses cannot be accurately extracted based only on TTVs because of the well known degeneracy between mass and eccentricity, TTV phases and amplitudes can still place upper limits on the masses of the candidates, confirming their planetary nature. Furthermore, the mass ratios of these planet pairs can be relatively tight constrained using these TTVs. The planetary pair in Kepler-82 (KOI-880) seems to have a particularly high mass ratio and density ratio, which might indicate very different internal compositions of these two planets. Some of these newly confirmed planets are also near MMR with other candidates in the system, forming unique resonance chains, e.g., Kepler-80 (KOI-500).Comment: Accepted to ApJS. 17 pages, 11 figures, 3 tables. KOI 869 is replaced with KOI 2038. Kepler numbers are assigne

    A Hybrid Mechanism Forming a 2:1 Librating-Circulating Resonant Configuration in the Planetary System

    Full text link
    A diversity of resonance configurations may be formed under different migration of two giant planets. And the researchers show that the HD 128311 and HD 73526 planetary systems are involved in a 2:1 mean motion resonance but not in apsidal corotation, because one of the resonance argument circulates over the dynamical evolution. In this paper, we investigate potential mechanisms to form the 2:1 librating-circulating resonance configuration. In the late stage of planetary formation, scattering or colliding among planetesimals and planetary embryos can frequently occur. Hence, in our model, we consider a planetary configuration of two giants together with few terrestrial planets. We find that both colliding or scattering events at very early stage of dynamical evolution can influence the configurations trapped into resonance. A planet-planet scattering of a moderate terrestrial planet, or multiple scattering of smaller planets in a crowded planetary system can change the resonant configuration. In addition, collision or merging can alter the masses and location of the giant planets, which also play an important role in shaping the resonant configuration during the dynamical evolution. In this sense, the librating-circulating resonance configuration is more likely to form by a hybrid mechanism of scattering and collision.Comment: 8 pages, 5 figures, 2 Tables, accepted for publication in MNRA

    Secular Evolution of HD 12661: A System Caught at an Unlikely Time

    Full text link
    The eccentricity evolution of multiple planet systems can provide valuable constraints on planet formation models. Unfortunately, the inevitable uncertainties in the current orbital elements can lead to significant ambiguities in the nature of the secular evolution. Integrating any single set of orbital elements inadequately describes the full range of secular evolutions consistent with current observations. Thus, we combine radial velocity observations of HD 12661 with Markov Chain Monte Carlo sampling to generate ensembles of initial conditions for direct n-body integrations. We find that any mean motion resonances are quite weak and do not significantly impact the secular evolution, and that current observations indicate circulation or large amplitude libration of the periapses. The eccentricity of the outer planet undergoes large oscillations for nearly all of the allowed two-planet orbital solutions. This type of secular evolution would arise if planet c had been impulsively perturbed, perhaps due to strong scattering of an additional planet that was subsequently accreted onto the star. Finally, we note that the secular evolution implied by the current orbital configuration implies that planet c spends ~96% of the time following an orbit more eccentric than that presently observed. Either this system is being observed during a relatively rare state, or additional planets are affecting the observed radial velocities and/or the system's secular eccentricity evolution.Comment: 5 pages, 2 figures, 1 table, accepted for publication in ApJ

    Dynamical Ne K Edge and Line Variations in the X-Ray Spectrum of the Ultra-compact Binary 4U 0614+091

    Get PDF
    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ksec with the high-energy transmission gratings onboard the \chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0×1036\times10^{36} \ergsec and 3.5×1036\times10^{36} \ergsec. Continuum variations are present at all times and spectra can be well fit with a powerlaw component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. The Ne K edge appears variable in terms of optical depths and morphology. The edge reveals average blue- and red-shifted values implying Doppler velocities of the order of 3500 \kms. The data show that Ne K exhibits excess column densities of up to several 1018^{18} cm2^{-2}. The variability proves that the excess is intrinsic to the source. The correponding disk velocities also imply an outer disk radius of the order of <109< 10^9 cm consistent with an ultra-compact binary nature. We also detect a prominent soft emission line complex near the \oviii Lα\alpha position which appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination between 86 and 89^{\circ}. The emissions appear consistent with an ionized disk with ionization parameters of the order of 104^4 at radii of a few 107^7 cm. The line wavelengths with respect to \oviiia\ are found variably blue-shifted indicating more complex inner disk dynamics.Comment: 24 pages, 8 figures, submitted to the Astrophyscial Main Journa

    Secondary resonances of co-orbital motions

    Get PDF
    The size distribution of the stability region around the Lagrangian point L4 is investigated in the elliptic restricted three-body problem as the function of the mass parameter and the orbital eccentricity of the primaries. It is shown that there are minimum zones in the size distribution of the stability regions, and these zones are connected with secondary resonances between the frequencies of librational motions around L4. The results can be applied to hypothetical Trojan planets for predicting values of the mass parameter and the eccentricity for which such objects can be expected or their existence is less probable.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    On the Eccentricity Distribution of Short-Period Single-Planet Systems

    Full text link
    We apply standard Markov chain Monte Carlo (MCMC) analysis techniques for 50 short- period, single-planet systems discovered with radial velocity technique. We develop a new method for accessing the significance of a non-zero orbital eccentricity, namely {\Gamma} analysis, which combines frequentist bootstrap approach with Bayesian analysis of each simulated data set. We find the eccentricity estimations from {\Gamma} analysis are generally consistent with results from both standard MCMC analysis and previous references. The {\Gamma} method is particular useful for assessing the significance of small eccentricities. Our results suggest that the current sample size is insufficient to draw robust conclusions about the roles of tidal interaction and perturbations in shaping the eccentricity distribution of short-period single-planet systems. We use a Bayesian population analysis to show that a mixture of analytical distributions is a good approximation of the underlying eccentricity distribution. For short-period planets, we find the most probable values of parameters in the analytical functions given the observed eccentricities. These analytical functions can be used in theoretical investigations or as priors for the eccentricity distribution when analyzing short-period planets. As the measurement precision improves and sample size increases, the method can be applied to more complex parametrizations for the underlying distribution of eccentricity for extrasolar planetary systems.Comment: 13 pages, 11 figures, 4 tables, accepted by MNRA

    LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Get PDF
    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation

    Tidal evolution of exo-planetary systems: WASP-50, GJ 1214 and CoRoT-7

    Full text link
    We perform numerical simulations to investigate tidal evolution of two single-planet systems, that is, WASP-50 and GJ 1214 and a two-planet system CoRoT-7. The results of orbital evolution show that tidal decay and circularization may play a significant role in shaping their final orbits, which is related to the initial orbital data in the simulations. For GJ 1214 system, different cases of initial eccentricity are also considered as only an upper limit of its eccentricity (0.27) is shown, and the outcome suggests a possible maximum initial eccentricity (0.4) in the adopted dynamical model. Moreover, additional runs with alternative values of dissipation factor Q1Q^\prime_1 are carried out to explore tidal evolution for GJ 1214b, and these results further indicate that the real Q1Q^\prime_1 of GJ 1214b may be much larger than its typical value, which may reasonably suggest that GJ 1214b bears a present-day larger eccentricity, undergoing tidal circularization at a slow rate. For the CoRoT-7 system, tidal forces make two planets migrating towards their host star as well as producing tidal circularization, and in this process tidal effects and mutual gravitational interactions are coupled with each other. Various scenarios of the initial eccentricity of the outer planet have also been done to investigate final planetary configuration. Tidal decay arising from stellar tides may still work for each system as the eccentricity decreases to zero, and this is in association with the remaining lifetime of each planet used to predict its future.Comment: 9 pages, 12 figures, accepted for publication in "SCIENCE CHINA Physics,Mechanics & Astronomy

    Equilibria in the secular, non-coplanar two-planet problem

    Full text link
    We investigate the secular dynamics of a planetary system composed of the parent star and two massive planets in mutually inclined orbits. The dynamics are investigated in wide ranges of semi-major axes ratios (0.1-0.667), and planetary masses ratios (0.25-2) as well as in the whole permitted ranges of the energy and total angular momentum. The secular model is constructed by semi-analytic averaging of the three-body system. We focus on equilibria of the secular Hamiltonian (periodic solutions of the full system), and we analyze their stability. We attempt to classify families of these solutions in terms of the angular momentum integral. We identified new equilibria, yet unknown in the literature. Our results are general and may be applied to a wide class of three-body systems, including configurations with a star and brown dwarfs and sub-stellar objects. We also describe some technical aspects of the semi-numerical averaging. The HD 12661 planetary system is investigated as an example configuration.Comment: 18 pages, 17 figures, accepted to Monthly Notices of the Royal Astronomical Societ
    corecore