31 research outputs found

    Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb:KLuW waveguide laser

    Get PDF
    We report on the diverse pulsed operation regimes of a femtosecond-laser-written Yb:KLuW channel waveguide laser emitting near 1040 nm. By the precise position tuning of a carbon-nanotube-coated saturable absorber (SA) mirror, the transition of the pulsed operation from Q-switching, Q-switched mode-locking and finally sub-GHz continuous-wave mode-locking are obtained based on the interplay of dispersion and mode area control. The Q-switched pulses exhibit typical fast SA Q-switched pulse characteristics depending on absorbed pump powers. In the Q-switched mode-locking, amplitude modulations of the mode-locked pulses on the Q-switched envelope are observed. The radio-frequency spectrum represents the coexistence of Q-switching and mode-locking signals. In the purely mode-locked operation, the waveguide laser generates 2.05-ps pulses at 0.5 GHz.National Research Foundation of Korea (2018H1A2AA1061480, 2019R1A2C3003504, 2020R1A4A2002828); Spanish Government (FIS2017-87970-R, MAT2016-75716-C2-1-R (AEI/FEDER,UE)); Junta de Castilla y León (SA287P18); Generalitat de Catalunya (2017SGR755)

    Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes

    Get PDF
    Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath the crystal surface. They were characterized by confocal laser microscopy and -Raman spectroscopy, indicating a reduced crystallinity and stress-induced birefringence of the WG cladding. In continuous-wave (CW) mode, under Ti:sapphire laser pumping at 802 nm, the maximum output power reached 171.1 mW at 1847.4 nm, corresponding to a slope efficiency of 37.8% for the 60 μm diameter WG. The WG propagation loss was 0.7±0.3 dB/cm. The top surface of the WGs was spin-coated by a polymethyl methacrylate film containing randomly oriented (spaghetti-like) arc-discharge single-walled carbon nanotubes serving as a saturable absorber based on evanescent field coupling. Stable passively -switched (PQS) operation was achieved. The PQS 60 μm diameter WG laser generated a record output power of 150 mW at 1846.8 nm with =34.6%. The conversion efficiency with respect to the CW mode was 87.6%. The best pulse characteristics (energy/duration) were 105.6 nJ/98 ns at a repetition rate of 1.42 MHz.Ministerio de Economía y Competitividad (MINECO) (FIS2013-44174-P, FIS2015-71933-REDT, MAT2016-75716-C2-1-R (AEI/FEDER,UE), TEC2014-55948-R); Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017SGR755); Consejería de Educación, Junta de Castilla y León (SA046U16, UIC016); Generalitat de Catalunya (2016FI_B00844, 2017FI_B100158, 2018 FI_B2 00123)

    Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers

    Get PDF
    A channel waveguide (WG) buried immediately below the surface of a Yb:KLuW crystal is used as a laser gain medium for passive -switching by both evanescent- and direct-field interactions with single-walled carbon nanotubes (SWCNTs) near 1040 nm. The SWCNTs used as saturable absorbers (SAs) are deposited on top of the half-ring-type channel WG fabricated via femtosecond direct laser writing. The -switched WG laser delivers 88.5 ns pulses at a 1.16 MHz repetition rate with a maximum average output power of 680 mW. For the two different interaction schemes with SWCNT-SAs, the pulse characteristics, depending on the output coupling ratio and absorbed pump power, are experimentally investigated and compared to the results of theoretical analyses of the SA -switched operation.National Research Foundation of Korea (2017R1A4A1015426, 2018H1A2A1061480); Spanish Government (FIS2017-87970-R, MAT2016-75716-C2-1-R (AEI/FEDER, UE)); Junta de Castilla y León (SA287P18); Generalitat de Catalunya (2017SGR755)
    corecore