57 research outputs found

    Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf

    Get PDF
    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves1,2 causing grounded glaciers to accelerate3 and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line4, which in the recent past has led to the disintegration of the most northerly ice shelves5,6. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwaterinduced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing7

    Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    Get PDF
    Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change

    Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand

    Get PDF
    The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss

    The Staphylococcus aureus RNome and Its Commitment to Virulence

    Get PDF
    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity

    Формування та розвиток загальної теорії стійкості (середина XVIII ст. — 30-і рр. ХХ ст.)

    Get PDF
    У статті розглянуто історію вивчення стійкості (середина XVIII — початок XX ст., світовий контекст). Досліджено внесок А. Пуанкаре та О.М. Ляпунова в розвиток загальної теорії стійкості. Показано розвиток їх ідей у працях російських та українських учених.В статье рассмотрена история изучения устойчивости (середина XVIII — начало XX в., мировой контекст). Исследован вклад французского ученого А. Пуанкаре и русского ученого А.М. Ляпунова в развитие общей теории устойчивости. Показано дальнейшее развитие их идей в трудах русских и украинских ученых.The history of basic research in stability is given. Contributions from H.Poincaré, a French mathematician, mechanic and physicist, and O. Lapunov, a soviet mathematician and mechanic (working in the Kharkiv university) to development of the general theory of stability are shown. In 1892—1902, O. Lyapunov constructed an original robust mathematical apparatus to study stability of motion. Development of ideas and methods of H.Poincar of H.Poincar³e and O. Lapunov in works of later Ukrainian and Russian scientists is shown

    The Greenland and Antarctic ice sheets under 1.5◦C global warming

    Get PDF
    Even if anthropogenic warming were constrained to less than 2°C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the last decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5-2.0°C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance elevation feedback, while for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening

    Infectious disease emergence and global change: thinking systemically in a shrinking world

    Get PDF
    corecore