153 research outputs found

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Polymorphisms in the Receptor Tyrosine Kinase MERTK Gene Are Associated with Multiple Sclerosis Susceptibility

    Get PDF
    Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10−5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility

    Dopaminergic drugs and the risk of hip or femur fracture: a population-based case–control study

    Get PDF
    SUMMARY: The effect of dopaminergic medication on the risk of hip/femur fractures is not clear. Our results showed a nearly twofold increased risk of hip/femur fractures in current dopaminergic drug users. Concomitant use of antidepressants further increased this risk. Fracture risk assessment may be warranted in elderly users of dopaminergic drugs. INTRODUCTION: Dopaminergic drugs, often used in the treatment of Parkinson's disease, have several pharmacological effects that may increase or decrease the risk of falling and fractures. Thus, the effect of dopaminergic medication on the risk of hip/femur fractures is not clear. The objective of the study was to examine the effect of dopaminergic medication and concomitant use of psychotropics on the risk of hip/femur fractures taking into account the timing of dopaminergic drug use. METHODS: A population-based case-control study in the PHARMO database was conducted for the period 1991 to 2002. Cases were patients aged 18 years and older with a first hip or femur fracture and matched to four control patients by year of birth, sex and geographical region. RESULTS: The study population included 6,763 cases and 26,341 controls. Current use of dopaminergic drugs (1-30 days before the index date) was associated with an increased risk of hip/femur fractures compared to never use (OR(adj) 1.76, 95% CI = 1.39-2.22), but this excess risk rapidly dropped to baseline levels when treatment had been discontinued >1 year ago. Concomitant use of antidepressants among current dopaminergic drug users further increased the risk of hip/femur fractures (OR(adj) 3.51, 95% CI = 2.10-5.87) while there was no additional risk with concomitant use of other psychotropics. CONCLUSIONS: Although the observed association between dopaminergic drugs and fracture risk may not be entirely causal, due to absence of information on the (severity of the) underlying disease, fracture risk assessment may be warranted in elderly users of dopaminergic drugs

    GAS6 Enhances Repair Following Cuprizone-Induced Demyelination

    Get PDF
    Growth arrest-specific protein 6 (gas6) activities are mediated through the Tyro3, Axl, and Mer family of receptor tyrosine kinases. Gas6 is expressed and secreted by a wide variety of cell types, including cells of the central nervous system (CNS). In this study, we tested the hypothesis that administration of recombinant human Gas6 (rhGas6) protein into the CNS improves recovery following cuprizone withdrawal. After a 4-week cuprizone diet, cuprizone was removed and PBS or rhGas6 (400 ng/ml, 4 µg/ml and 40 µg/ml) was delivered by osmotic mini-pump into the corpus callosum of C57Bl6 mice for 14 days. Nine of 11 (82%) PBS-treated mice had abundant lipid-associated debris in the corpus callosum by Oil-Red-O staining while only 4 of 19 (21%) mice treated with rhGas6 had low Oil-Red-O positive droplets. In rhGas6-treated mice, SMI32-positive axonal spheroids and APP-positive deposits were reduced in number relative to PBS-treated mice. Compared to PBS, rhGas6 enhanced remyelination as revealed by MBP immunostaining and electron microscopy. The rhGas6-treated mice had more oligodendrocytes expressing Olig1 in the cytoplasm, indicative of oligodendrocyte progenitor cell maturation. Relative to PBS-treated mice, rhGas6-treated mice had fewer activated microglia in the corpus callosum by Iba1 immunostaining. The data show that rhGas6 treatment resulted in more efficient repair following cuprizone-induced injury

    COPPADIS-2015 (COhort of Patients with PArkinson's DIsease in Spain, 2015), a global--clinical evaluations, serum biomarkers, genetic studies and neuroimaging--prospective, multicenter, non-interventional, long-term study on Parkinson's disease progressio

    Get PDF
    Background: Parkinson?s disease (PD) is a progressive neurodegenerative disorder causing motor and non-motor symptoms that can affect independence, social adjustment and the quality of life (QoL) of both patients and caregivers. Studies designed to find diagnostic and/or progression biomarkers of PD are needed. We describe here the study protocol of COPPADIS-2015 (COhort of Patients with PArkinson?s DIsease in Spain, 2015), an integral PD project based on four aspects/concepts: 1) PD as a global disease (motor and non-motor symptoms); 2) QoL and caregiver issues; 3) Biomarkers; 4) Disease progression.Methods/design: Observational, descriptive, non-interventional, 5-year follow-up, national (Spain), multicenter (45 centers from 15 autonomous communities), evaluation study. Specific goals: (1) detailed study (clinical evaluations, serum biomarkers, genetic studies and neuroimaging) of a population of PD patients from different areas of Spain, (2) comparison with a control group and (3) follow-up for 5 years. COPPADIS-2015 has been specifically designed to assess 17 proposed objectives. Study population: approximately 800 non-dementia PD patients, 600 principal caregivers and 400 control subjects. Study evaluations: (1) baseline includes motor assessment (e.g., Unified Parkinson?s Disease Rating Scale part III), non-motor symptoms (e.g., Non-Motor Symptoms Scale), cognition (e.g., Parkinson?s Disease Cognitive Rating Scale), mood and neuropsychiatric symptoms (e.g., Neuropsychiatric Inventory), disability, QoL (e.g., 39-item Parkinson?s disease Quality of Life Questionnaire Summary-Index) and caregiver status (e.g., Zarit Caregiver Burden Inventory); (2) follow-up includes annual (patients) or biannual (caregivers and controls) evaluations. Serum biomarkers (S-100b protein, TNF-?, IL-1, IL-2, IL-6, vitamin B12, methylmalonic acid, homocysteine, uric acid, C-reactive protein, ferritin, iron) and brain MRI (volumetry, tractography and MTAi [Medial Temporal Atrophy Index]), at baseline and at the end of follow-up, and genetic studies (DNA and RNA) at baseline will be performed in a subgroup of subjects (300 PD patients and 100 control subjects). Study periods: (1) recruitment period, from November, 2015 to February, 2017 (basal assessment); (2) follow-up period, 5 years; (3) closing date of clinical follow-up, May, 2022. Funding: Public/Private. Discussion: COPPADIS-2015 is a challenging initiative. This project will provide important information on the natural history of PD and the value of various biomarkers

    Somatosensory processing in neurodevelopmental disorders

    Get PDF
    The purpose of this article is to review the role of somatosensory perception in typical development, its aberration in a range of neurodevelopmental disorders, and the potential relations between tactile processing abnormalities and central features of each disorder such as motor, communication, and social development. Neurodevelopmental disorders that represent a range of symptoms and etiologies, and for which multiple peer-reviewed articles on somatosensory differences have been published, were chosen to include in the review. Relevant studies in animal models, as well as conditions of early sensory deprivation, are also included. Somatosensory processing plays an important, yet often overlooked, role in typical development and is aberrant in various neurodevelopmental disorders. This is demonstrated in studies of behavior, sensory thresholds, neuroanatomy, and neurophysiology in samples of children with Fragile X syndrome, autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and cerebral palsy (CP). Impaired somatosensory processing is found in a range of neurodevelopmental disorders and is associated with deficits in communication, motor ability, and social skills in these disorders. Given the central role of touch in early development, both experimental and clinical approaches should take into consideration the role of somatosensory processing in the etiology and treatment of neurodevelopmental disorders

    Structural Alterations in a Component of Cytochrome c Oxidase and Molecular Evolution of Pathogenic Neisseria in Humans

    Get PDF
    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb3 oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore