1,833 research outputs found

    Synthesis, structure, and magnetism in the ferromagnet La_{3}MnAs_{5}: Well-separated spin chains coupled via itinerant electrons

    Get PDF
    In this work, we systematically report the synthesis, structure, and magnetism of a compound of filled anti-Mn3Si5 type La3MnAs5. It crystallizes in a hexagonal structure with the space group of P63/mcm (193). The structure consists of face-sharing MnAs6 octahedral chains along the c axis, which are well separated by a large distance of 8.9913 Å, demonstrating a strong one-dimensional (1D) structural character. Physical property measurements indicate that La3MnAs5 is a ferromagnetic metal with TC ∼ 112 K. Due to the short-range intrachain spin coupling, the susceptibility deviates from the Curie-Weiss behavior in a wide temperature window and the magnetic entropy corresponding to the ferromagnetic transition is significantly lower than that expected from the fully saturated state. The magnetic critical behavior studies show that La3MnAs5 can be described by the three-dimensional Heisenberg model. The orbital hybridization between the 1D MnAs6 chain and intermediate La atom near the Fermi level reveals that the itinerant electrons play a key role in transmitting spin interaction among the MnAs6 spin chains. Our results indicate that La3MnAs5 is a rare ferromagnetic metal with well-separated spin chains, which provides a good opportunity to study the mechanism of interchain spin coupling via itinerant electrons

    Co-localization of Pirt protein and P2X2 receptors in the mouse enteric nervous system

    Get PDF
    P2X2 receptors, with other P2X receptor subtypes, have an important role mediating synaptic transmission in regulating the functions of the gastrointestinal tract. Our recent work has found a new regulator of P2X receptor function, called phosphoinositide-interacting regulator of transient receptor potential channels (Pirt). In the present work, we have shown that Pirt immunoreactivity was localized in nerve cell bodies and nerve fibers in the myenteric plexus of the stomach, ileum, proximal, and distal colon and in the submucosal plexus of the jejunum, ileum, proximal, and distal colon. Almost all the Pirt-immunoreactive (ir) neurons were also P2X2-ir, and co-immunoprecipitation experiments have shown that Pirt co-precipitated with the anti-P2X2 antibody. This work provides detailed information about the expression of Pirt in the gut and its co-localization with P2X2, indicating its potential role in influencing P2X2 receptor function

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components

    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death

    Get PDF
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201

    Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from Archaea to Function in Mammalian Cells

    Get PDF
    A previously engineered Methanocaldococcus jannaschii –tyrosyl-tRNA synthetase pair orthogonal to Escherichia coli was modified to become orthogonal in mammalian cells. The resulting -tyrosyl-tRNA synthetase pair was able to suppress an amber codon in the green fluorescent protein, GFP, and in a foldon protein in mammalian cells. The methodology reported here will allow rapid transformation of the much larger collection of existing tyrosyl-tRNA synthetases that were already evolved for the incorporation of an array of over 50 unnatural amino acids into proteins in Escherichia coli into proteins in mammalian cells. Thus we will be able to introduce a large array of possibilities for protein modifications in mammalian cells

    A New bis(rhodamine)-Based Fluorescent Chemosensor for Fe3+

    Get PDF
    A new bis(rhodamine)-based fluorescent probe 4 was synthesized, and it exhibited high selectivity for Fe3+ over other commonly coexistent metal ions in both 50% ethanol and Tris–HCl buffer. Upon the addition of Fe3+, the spirocyclic ring of 4 was opened and a significant enhancement of visible color and fluorescence in the range of 500–600 nm was observed

    Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot

    Get PDF
    Xanthomonas arboricola pv. pruni causes bacterial spot of stone fruit resulting in severe yield losses in apricot production systems. Present on all continents, the pathogen is regulated in Europe as a quarantine organism. Host resistance is an important component of integrated pest management; however, little work has been done describing resistance against X. arboricola pv. pruni. In this study, an apricot population derived from the cross “Harostar” × “Rouge de Mauves” was used to construct two parental genetic maps and to perform a quantitative trait locus analysis of resistance to X. arboricola pv. pruni. A population of 101 F1 individuals was inoculated twice for two consecutive years in a quarantine greenhouse with a mixture of bacterial strains, and disease incidence and resistance index data were collected. A major QTL for disease incidence and resistance index accounting respectively for 53 % (LOD score of 15.43) and 46 % (LOD score of 12.26) of the phenotypic variation was identified at the same position on linkage group 5 of “Rouge de Mauves.” Microsatellite marker UDAp-452 co-segregated with the resistance, and two flanking microsatellites, namely BPPCT037 and BPPCT038A, were identified. When dividing the population according to the alleles of UDAp-452, the subgroup with unfavorable allele had a disease incidence of 32.6 % whereas the group with favorable allele had a disease incidence of 21 %, leading to a reduction of 35.6 % in disease incidence. This study is a first step towards the marker-assisted breeding of new apricot varieties with an increased tolerance to X. arboricola pv. pruni

    Across-cohort QC analyses of GWAS summary statistics from complex traits.

    Get PDF
    Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy

    Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity.</p> <p>Methods</p> <p>Male C3H/HeN mice (n = 5 mice per group; 6-8 weeks old) were exposed to a sub-lethal dose (5 Gy) of γ radiation using a <sup>137</sup>Cs source at a dose rate of 0.77 Gy/min. Two doses of ON 01210.Na (500 mg/kg body weight) were administered subcutaneously at 24 h and 36 h after radiation exposure. Mitigation of hematopoietic toxicity by ON 01210.Na was investigated by peripheral white blood cell (WBC) and platelet counts at 3, 7, 21, and 28 d after radiation exposure. Granulocyte macrophage colony forming unit (GM-CFU) assay was done using isolated bone marrow cells, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) was performed on bone marrow sections at 7 d post-exposure. The DNA damage response pathway involving ataxia telangiectasia mutated (ATM) and p53 was investigated by Western blot in bone marrow cells at 7 d post-exposure.</p> <p>Results</p> <p>Compared to the vehicle, ON 01210.Na treated mice showed accelerated recovery of peripheral WBC and platelet counts. Post-irradiation treatment of mice with ON 01210.Na also resulted in higher GM-CFU counts. The mitigation effects were accompanied by attenuation of ATM-p53-dependent DNA damage response in the bone marrow cells of ON 01210.Na treated mice. Both phospho-ATM and phospho-p53 were significantly lower in the bone marrow cells of ON 01210.Na treated than in vehicle treated mice. Furthermore, the Bcl2:Bax ratio was higher in the drug treated mice than the vehicle treated groups.</p> <p>Conclusions</p> <p>ON 01210.Na treatment significantly mitigated the hematopoietic toxicity induced by a sub-lethal radiation dose. Mechanistically, attenuation of ATM-p53 mediated DNA damage response by ON 01210.Na is contributing to the mitigation of radiation-induced hematopoietic toxicity.</p
    corecore