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ABSTRACT: In this study, high-performance flexible strain sensors based on carbon 

nanotube (CNT) and graphene nanoplatelet (GNP) filled thermoplastic polyurethane 

(TPU) composites were fabricated via Fused Filament Fabrication (FFF) 3D printing. 

The introduction of GNPs generated a more complete conductive network of the 

composites due to the improved nanofiller dispersion. Due to the synergy of CNTs and 

GNPs, the printed CNT/GNP(3:1)/TPU sensor shows higher sensitivity (GF = 

136327.4 at 250% strain), larger detectable range (0~250% strain), and better stability 

(3000 cycles) compared with the CNT/TPU and GNP/TPU sensors with a nanofiller 

content of 2 wt%. Furthermore, the printed sensors can accurately detect strains at 

different frequencies (0.01~1 Hz). A modelling study based on tunneling theory was 

conducted to analysis the strain sensing mechanism, and the theoretical results agreed 

well with the experimental data. The capability of the sensors in monitoring 

physiological activities and speech recognition has also been demonstrated. 

Keywords: carbon nanotubes, graphene nanoplatelets, polymer composites, sensor, 

3D printing 

Introduction 

With the increasing level of automation in industrial production, the global 

market for strain sensors is expanding [1]. However, conventional strain sensors made 

of metal and semiconductor materials usually show limited sensitivity [2]. Also, the 

flexibility and strain range of such sensors do not meet the performance requirements 
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of a high strain field. Therefore, there is a need to develop suitable flexible strain 

sensors to meet industrial needs. The rapid growth and development of nanomaterials 

in the last decade has enabled their use in strain sensing applications. Currently, the 

nanomaterials widely used in the preparation of flexible sensors include graphene 

nanoplatelets (GNPs) [3], reduced graphene oxide (rGO), multiwalled carbon 

nanotubes (MWCNTs) [4], silver nanowires (AgNWs), and silver nanoparticles 

(AgNPs). For instance, Zhang et al. [5] reported a method for preparing strain sensors 

of TPU/CNT composite films using solution blending, which reduced the percolation 

threshold (𝑃𝑐 ≈ 0.35 wt%) of CNTs, and also induced a high repeatability during the 

cyclic stretch-release testing of the composites. Wang et al. [6] used electrospinning 

method to prepare a graphene/TPU fiber sensor with a high sensitivity (gauge factor 

(GF) is 11 at the strain of 10%) and good stability. However, the use of a single 

nanofiller in strain sensor applications has some limitations which are mainly due to 

filler dispersibility and optimum network formation. However, the use of a single 

nanofiller in the preparation of strain sensors has some limitations which are mainly 

due to the poor nanofiller dispersibility and more difficulties in conductive network 

formation [2, 4]. For example, one-dimensional MWCNTs are easily entangled, which 

may increase the strain range of the sensor but also decrease its sensitivity. Two 

dimensional GNPs that can slip under tension, provide high sensitivity but a low 

strain range [7]. 

Up to now, the synergistic effect of different nanofillers has been reported in 

much literature to improve the dispersion of nanofillers and generate more conductive 
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paths [8]. Ma et al. [9] fabricated versatile piezoresistive sensors based on conductive 

polyurethane (PU) sponges using dip-coating layer-by-layer electrostatic assembly. 

The resultant conductive sponges exhibited an excellent conductivity and 

compressibility (up to 75%) due to the synergistic effect of conductive CNT/rGO 

structures. Peng et al. [10] fabricated a lightweight and high-performance 

CNF-rGO/CNT carbon aerogel using freeze drying. The synergistic effect of CNTs 

and cellulose nanofibers (CNFs) endowed the carbon aerogel with a high sensitivity 

and ultrahigh compressibility (up to 95% strain). Zhao et al. [11] prepared highly 

conductive multifunctional rGO/CNT hybrid sponge-based strain sensor through 

chemical vapor deposition (CVD). Compared with the CNT sponge, the sensitivity of 

the rGO/CNT hybrid sponge is 50% higher.  

However, the preparation methods mentioned above are usually expensive and  

complicateddifficult to scale up for industrial use. Additionally, they are not suitable 

for customizing strain sensor performance due to their limited capability in structural 

design and control. Additive Manufacturing (AM) or 3D printing technologies 

fabricate objects based on digital model files via a layer-by-layer method and from a 

variety of materials such as powdered metals and plastic filaments and powders. 

Conductive polymer composites have been successfully processed using 3D printing 

technologies [12-19]. The techniques that have been utilized include powder bed 

fusion [12], vat photopolymerization [13], and fused filament fabrication [14]. Mu et 

al. [15] prepared a conductive polymer composite material based on MWCNTs and 

photocurable resin using vat photopolymerization. Li et al. [16] processed a 
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CNT/TPU composite with a low percolation threshold of 0.2 wt% using powder bed 

fusion. Odent et al. [17] printed flexible and highly-conductive poly(vinylidene 

fluoride) (PVDF) composites containing multi-walled carbon nanotube (MWCNT) 

using FFF. Benefiting from its low cost and flexible structural design, 3D printing is 

therefore a promising processing technology for sensor manufacture. Christ et al. [18] 

used FFF to fabricate a flexible strain sensor based on CNT/TPU nanocomposites. 

The results showed that increases in CNT content improved the printability of TPU. 

Xiang et al. [14] reported a method to enhance the performance of FFF 3D printed 

strain sensors by non-covalently modifying CNTs to improve the interfacial 

interactions with polymer matrix. Huang et al. [19] printed carbon fiber-filled 

conductive silicon rubbers (CSRs) through an extruder. The printed CSRs exhibited 

improved mechanical and electrical properties along the alignment direction of the 

fibers. The printed strain sensor was capable of recognizing the bending of fingers, 

demonstrating its potential for monitoring human movement. Although research in 

this important area is increasing, the focus tends to be on optimization the structure of 

the 3D printed sensors and the effects of nanofiller type and composition on the 

performance of the printed composites is given less attention. Recently, the authors 

synthesized silver nanoparticles (AgNPs) by electrophoretic deposition in the 

presence of CNTs, then printed a highly elastic strain sensor containing the hybrid 

nanofillers via FFF. It was found that the sensing property of the sensor was improved 

with the addition of AgNPs, while the synthesis process of AgNPs was complicated 

and the sensitivity of sensor should be further increased [20]. 
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In this work, flexible strain sensors based on CNT/TPU, GNP/TPU, and 

CNT/GNP/TPU nanocomposites were fabricated via the FFF 3D printing process. 

The dispersion of nanofillers in the TPU and the printability of the nanocomposites 

were studied. Furthermore, the effects of nanofiller type and synergy of hybrid 

nanofillers on the electrical, tensile and strain sensing properties of the 3D printed 

sensors were systematically researched. To understand the mechanism of strain 

sensing, a modelling analysis based on tunneling theory was performed. The ability of 

strain sensors to monitor limb motions, physiological activities, and speech 

recognition have also been demonstrated. This work shows an effective method for 

the 3D printing of high-performance flexible strain sensors with potential applications 

in software robots, smart wearable devices, and medical monitoring equipment. 

Experimental Section 

Materials 

Multi-walled carbon nanotubes (NC7000) with a length and a diameter of 1.5 μm 

and 9.5 nm, respectively, were sourced from the Nanocyl (Belgium). Graphene 

nanoplatelets with an average of 5~6 layers were provided by the Carbonene Co. Ltd 

(China). The thickness and diameter of the GNPs are of 3 nm and 5~15 μm, 

respectively. Thermoplastic polyurethane (TPU, Bayer 2195) particles, with a mass 

fraction of hard segment of 36 wt%, a density of 1.19 g/cm3 and a melt flow index of 

12.1 g/10 min (210 °C, at a pressure of 5 kg) was purchased from the Bayer Co. Ltd. 

Dimethylformamide (DMF) reagent was supplied by the Chron Chemicals Co. Ltd 
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(China). 

Preparation of nanocomposites 

Nanocomposites with 0.5 ~ 5 wt% nanofiller loadings were prepared. CNTs and 

GNPs at different weight ratios were dispersed in DMF by ultra-sonicating at 100 W 

for 1 h. Then, the TPU particles were introduced into the DMF solvent and the 

mixture was magnetically stirring for 2 h for a complete dissolution. The mixed 

suspension was flocculated with absolute ethanol to remove the less volatile DMF. 

The flocculated product was placed in a forced air oven at 80 °C for 24 h to remove 

the remaining solvent and to obtain nanocomposite sheets (Figure 1). The masses of 

raw materials used to prepare CNT/GNP/TPU composites with various CNTs:GNPs 

weight ratios (7:1, 3:1, 1:1, 1:3, and 1:7) are listed in Table 1 for a total content of 2 

wt% nanofillers. CNT/TPU and GNP/TPU composites were also prepared by the 

same method and used as references. 

Table 1. Content of raw materials for preparing CNT/TPU, GNP/TPU, and 

CNT/GNP/TPU nanocomposites with total 2 wt% nanofillers. 

Sample  Nanofiller ratio 

(CNT: GNP) 

CNTs  

(g) 

GNPs  

(g) 

TPU  

(g) 

CNT/TPU 

CNT/GNP (7:1)/TPU 

- 

7:1 

0.40 

0.35 

- 

0.05 

19.60 

19.60 

19.60 

19.60 

CNT/GNP (3:1)/TPU 3:1 0.30 0.10 

CNT/GNP (1:1)/TPU 1:1 0.20 0.20 
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CNT/GNP (1:3)/TPU 1:3 0.10 0.30 19.60 

19.60 

19.60 

CNT/GNP (1:7)/TPU 1:7 0.50 0.35 

GNP/TPU - - 0.40 

FFF 3D printing of nanocomposites 

The prepared composite material was added to a desktop single-screw extruder 

(Wellzoom Type C) to produce a composite feedstock filament with a diameter of 

1.75 mm. The processing temperature of the extruder was 210 °C, and the screw 

speed was 100 rev/min. The filaments were then processed via FFF using an ET-K1 

desktop 3D printer (ET Co. Ltd., China). A stacking mode with an interlayer angle of 

90° was applied (Figure 1). The nozzle temperature was set at 220 ºC to fully melt the 

composite filament (Table 2). Filament was deposited at 20 mm/s onto a substrate that 

was maintained at 70 ºC to allow better adhesion of the first layer deposited. 100% 

infill was employed. The layer thickness was 0.1 mm. The dimension of the printed 

samples was 50 mm × 10 mm × 1 mm. 
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Figure 1 Schematic diagram of the 3D printing of the flexible strain sensor. 

Table 2. 3D printing parameters for the nanocomposite strain sensors. 

Parameter Value 

Layer thickness (mm) 

Infill (%) 

0.1 

100 

Printing speed (mm/s) 20 

Hot bed temperature (°C) 70 

Nozzle temperature (°C) 220 

Nozzle diameter (mm) 0.4 

Characterization 

Zeta potentiometer (Brookhaven Zeta PALS 190 Plus) was used to analyze the 

dispersibility of CNTs, GNPs and CNT/GNP nanofillers in DMF. UV-Vis spectra 
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were recorded on a Perkin EImer Lambda 850 to help to verify the dispersion of the 

suspensions. X-ray diffraction (XRD) was conducted on a D8-Adcance instrument 

(Germany) and using Cu-K radiation. The scanning was conducted  at a speed of 

0.02° min-1 from 10 to 50°. Field emission scanning electron microscopy (FESEM) 

images were obtained using a FEI Quanta 650 FEG apparatus under an accelerating 

voltage of 30 kV. All the samples were not sprayed with gold in order to enable 

observation of the conductive network via the secondary electrons emitted from the 

conductive nanofillers. An MTS CMT4104 Universal Tester was used to characterize 

the tensile properties of samples. The conductivity of the nanocomposites was 

measured using a two-point method in combination with a picoamp-meter (Keithley 

6485) and a DC digital source meter (Tektronix PWS4323) at a voltage of 3 V. The 

electrode distance was 15 mm. Silver paste was used to minimize the contact 

resistance between sample and electrode. The sensing performance of the strain 

sensor was also tested using picoamp-meter, DC digital source meter and universal 

tester mentioned above. 

Results and Discussion 

Dispersion of nanofillers 

The CNT/DMF, GNP/DMF, and CNT/GNP(3:1)/DMF suspensions (200 mg/100 

mL), were left standing for one week after 1 h ultrasonication. The zeta potentials (𝜁) 

of the nanofiller/DMF suspensions are displayed in Fig. 2a. The 𝜁 potential of the 

CNT/GNP(3:1)/DMF suspension before standing was 38.6 mV, which is higher than 
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that of CNT/DMF suspension (27.2 mV). After one week of standing, the 𝜁 potential 

of the nanofiller/DMF suspensions decreased to different extents. The 

CNT/GNP(3:1)/DMF suspension exhibited the smallest decrase in 𝜁 (from 38.6 to 

36.3 mV) after standing for one week, indicating that GNPs have a positive impact on 

improving the dispersion of CNTs due to their large specific surface area and ability 

to separate the CNTs spatially. Fig. 2b shows the UV-Vis spectra of all samples before 

and after one week standing. The spectrum of the nanofiller/DMF suspension shows a 

distinct absorption peak at 255 nm due to the transition of the π-π conjugated 

electrons of the nanofiller. A higher absorption peak indicates a better dispersion of 

the nanofillers in the suspension. The UV absorption peaks of the 

CNT/GNP(3:1)/DMF suspensions before and after standing are higher than those of 

the CNT/DMF and GNP/DMF suspensions, indicating that the CNT and CNP hybrid 

nanofillers exhibit better dispersion and stability. Fig. 2c exhibits the photographs of 

the nanofiller/DMF suspensions before and after standing for one week. It can be seen 

that most of the CNTs have precipitated to the bottom of the bottle after standing. 

However, due to the polar groups left on the surface of GNPs, the suspension made 

with GNPs maintained a good homogeneous state.  

Fig. 2d shows the XRD spectra of CNTs, GNPs, neat TPU, CNT/TPU, 

GNP/TPU, and CNT/GNP/TPU nanocomposites with 2 wt% nanofiller. The 

diffractogram of the CNTs has two diffraction peaks at around 25.12° (002) and 43.2° 

(100), which are attributed to the in-plane graphitic structure and the interlayer space 

in the radial direction of CNTs, respectively [21]. The weak and broad diffraction 
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peak belonging to GNPs appears about 25.1°, which can be assigned to the (002) 

planes of the graphite structure with short-range ordered structure in GNPs. The XRD 

pattern of neat TPU shows a wide diffraction peak at 20.1°, which denotes a 

short-range, ordered structure of both soft and hard domains along with a disordered 

structure of the amorphous phase of the TPU matrix [22]. The XRD pattern of 

CNT/TPU, has the diffraction peak of TPU at 20.1°, but also the diffraction peak of 

CNTs at 25.21°. It suggests that CNTs are poorly dispersed in the TPU matrix. The 

diffractograms of GNP/TPU and CNT/GNP(3:1)/TPU have only the diffraction peak 

of TPU, suggesting that GNPs and CNT/GNP hybrid nanofillers are well dispersed in 

the TPU matrix. Table S1 (Supporting Information) shows that the crystallinity (𝑋𝑐) of 

TPU decreases with the addition of nanofillers due to nanofiller agglomerates 

reducing the mobility of the TPU chains. The 𝑋𝑐  of CNT/TPU and 

CNT/GNP(3:1)/TPU composites decreased by 42% and 16%, respectively, compared 

with neat TPU. This also confirms that the addition of GNPs significantly facilitates 

the dispersion of nanotubes in the matrix. 
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Figure 2 (a) Zeta potential (𝜁) of the nanofiller/DMF suspension before and after 

standing for one week, (b) UV-Vis spectra of nanofiller/DMF suspensions before and 

after standing for one week, (c) Digital photos of nanofiller/DMF suspensions before 

and after standing for one week, (d) XRD patterns of the neat TPU, CNT/TPU, 

GNP/TPU, and CNT/GNP(3:1)/TPU samples. 

Printability and morphology 

If the filament is not sufficiently rigid it will buckle at the entrance to the 

extruder of the FFF device and prevent extrusion of the filament through the printer 

nozzle. The critical buckling pressure (𝑃𝑐𝑟) of the filament can be calculated using the 

Euler formula [23]: 

𝑃𝑐𝑟 =
𝜋2𝐸𝐷𝑓

2

16𝐿𝑓
2                                                      (1) 
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where 𝐷𝑓 is the diameter of the nanocomposite filament, 𝐸 is the elastic modulus of 

the filament, and 𝐿𝑓 is the length of filament from the melting zone to the drive gear.  

Fig. 3a and b present the curves of the elastic modulus and buckling pressure, 

respectively. It can be observed that the 𝐸 and 𝑃𝑐𝑟 of the filament increase almost 

linearly with the increase in nanofiller content. When the weight fraction of CNTs is 2 

wt%, 𝐸 and 𝑃𝑐𝑟 of the CNT/TPU filaments are 19.8 MPa and 7.6 kPa, respectively. 

For a weight fraction of CNTs of 5 wt%, the values of 𝐸 and 𝑃𝑐𝑟 of the CNT/TPU 

filaments are 26.9 MPa and 1.03 kPa, respectively. Hence, the 𝑃𝑐𝑟 values for 2 and 5 

wt% CNT/TPU filaments increase by 17.1 and 59.1%, respectively, compared with 

that of neat TPU filament. However, excessive filler content causes agglomeration of 

the nanofillers in the polymer matrix, which is detrimental for the printability of the 

nanocomposites. When the content of the nanofiller is 2 wt%, the printability of the 

composites changes with the weight fraction ratios of CNTs and GNPs as shown in 

Fig. 3c and d. 𝐸 and 𝑃𝑐𝑟 values of the of GNP/TPU filaments are slightly higher 

compared with those of CNT/TPU filaments, indicating that the enhancement effect 

of the two-dimensional GNPs is better than that of one-dimensional CNTs. 

Interestingly, at the same loading degree of nanofiller (2 wt%), the 

CNT/GNP(3:1)/TPU filament displays the highest 𝐸 and 𝑃𝑐𝑟 (21.2 MPa and 8.2 kPa, 

respectively) compared with the other nanocomposite filaments. It also exhibits the 

best printability. However, the 𝐸 and 𝑃𝑐𝑟 of the nanocomposite filaments decrease 

as the amounts of GNPs increases probably due to the formation of GNP 

agglomerates. 
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Figure 3 The curves of 𝐸 (a) and 𝑃𝑐𝑟 (b) of the extruded filaments versus the 

nanofiller content, Values of 𝐸 (c) and 𝑃𝑐𝑟 (d) of the extruded filament at different 

weight ratios of CNTs and GNPs. 

Figure 4 shows the FESEM images of the printed composites at different 

magnifications. Fig. 4a and b show the surface and cross-section structures of the 

printed CNT/TPU composites, respectively. It can be observed that the printed 

samples have a distinct multi-layer structure with a layer thickness of approximately 

0.1 mm (Fig. 4b). Yet some voids exist in the printed nanocomposites, despite the 

good adhesion between layers. It can be seen in Fig. 4c-d and Fig. S1a-b (Supporting 

information)d that numerous CNT agglomerates are distributed in CNT/TPU 

nanocomposites. Fig. 4e and f show the surface and cross-section morphology of the 

GNP/TPU composites. The edges of numerous GNPs can be clearly seen on the 

surface of sample due to their large diameter (Fig. 4e), while they are well embedded 
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in the matrix according to the fractured cross-section morphology of sample (Fig. 4f 

and Fig. S1c-d). Compared with the CNT/TPU nanocomposites, the flake-like GNPs 

in the GNP/TPU nanocomposites displays a better dispersion. The morphology of 

GNP loaded on the surface of the printed CNT/GNP(3:1)/TPU nanocomposites is 

more difficult to define due to being covered by polymer wrapped CNTs (Fig. 4g and 

Fig. S1e-f). As shown in Fig. 4 h, the CNTs and GNPs are more uniformly dispersed 

in the matrix. This result is due to the synergistic effect of combining GNPs and CNTs, 

which improves the dispersion of nanofillers. 
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Figure 4 FESEM of the surface (left) and cross-sections (right) of printed 

nanocomposites with 2 wt% nanofillers: (a-d) CNT/TPU, (e-f) GNP/TPU, (g-h) 

CNT/GNP(3:1)/TPU. The samples were not sprayed with gold. The CNTs and GNPs 

are pointed out using yellow and red arrows, respectively. 

Electrical properties 

The electrical volume conductivity (𝜎) of the printed nanocomposites was 

obtained using Eq. (2): 

𝜎 =
1

𝑅
×

𝐿

𝑆
=

𝐼

𝑈
×

𝐿

𝑆
                                                (2) 

where 𝑅 is the electrical volume resistance of the sample, 𝑈 and 𝐼 are the voltage 

and current applied on the sample, respectively, 𝑆 and 𝐿 are the cross-sectional area 

of the sample and electrode distance, respectively [24].  

The conductivity of the nanocomposite beyond the percolation threshold can be 

fitted using the power law [25]:  

σ ∝  (𝑓 − 𝑓𝑐)𝑡                for 𝑓 > 𝑓𝑐                          (3) 

where 𝑓 and 𝑓𝑐 are the content of nanofillers and the critical content of nanofillers 

for the composites at percolation threshold, respectively and t is the critical exponent 

of the conductive region. The formula follows a power-law dependence of about 

1.0~1.3 in a two-dimensional system and 1.6~2.0 in a three-dimensional system. 

Fig. 5a and b show the conductivity curves obtained for the samples. By 

applying classic percolation theory, a percolation threshold (𝑓𝑐 ) of 1.98 wt% is 

obtained for the CNT/TPU sample. The GNP/TPU has a lower percolation threshold 
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(𝑓𝑐 = 1.67 wt%) than the CNT/TPU as a result of the high aspect ratio and improved 

dispersion of GNPs. The synergistic effect of CNTs and GNPs produces a more 

complete conductive network structure in the TPU, which further reduces the 

percolation threshold (𝑓𝑐  = 1.42 wt%) of the CNT/GNP(3:1)/TPU composites. The 

values of the critical exponents (t) are in the range 1.6 to 2 for all printed 

nanocomposites (Fig. 5b), indicating that all samples have a three-dimensional 

conductive network. 

The conductive network in the TPU and the synergistic effect of CNTs and GNPs 

are illustrated in Fig. 5e. Many agglomerates of nanotubes are distributed in the 

CNT/TPU composites. Nevertheless, more individual GNPs are evenly dispersed in 

the TPU matrix. GNPs favor the construction of a more efficient conductive network 

in the TPU. As a result, the GNP/TPU composite has a lower percolation threshold 

compared with that of the CNT/TPU nanocomposite. When the GNPs and CNTs are 

simultaneously introduced in the TPU matrix, the GNPs act as “spacers” that hinder 

the agglomeration of CNTs [8]. Furthermore, the one-dimensional CNTs bridge the 

gaps between GNPs, facilitating more conductive paths. Therefore, the addition of 

GNPs can improve the electrical conductivity of the resulting nanocomposite and 

reduce its percolation threshold.  

The amount of GNPs is also an important factor influencing the electrical 

conductivity of nanocomposites (Fig. 5c). The conductivity of the CNT/TPU and 

GNP/TPU composites with 2 wt% nanofiller content is 3.51 × 10-6 and 0.59 × 10-6 

S/cm, respectively. However, the CNT/GNP(3:1)/TPU shows the highest conductivity 
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(1.92 × 10-5 S/cm) at the same nanofiller loading. As the results show in Fig. 5e, when 

the content of GNPs is too small, agglomeration of CNTs can still occur in the 

nanocomposite, which limits the improvement of the electrical conductivity of the 

composite. When CNTs:GNPs = 3:1, the electrical conductivity of the nanocomposite 

is significantly enhanced due to the low content of agglomerates. However, further 

increase in the content of GNPs results in a reduction of available CNTs to bridge the 

gap between GNPs and thus leads to a decrease in the conductivity of the 

nanocomposite. In summary, CNT/GNP(3:1)/TPU exhibits better printability (Section 

3.2) and electrical performance compared to other nanocomposites with the same 

nanofiller content. The mechanical and sensing properties of these particular 

nanocomposites are therefore investigated to see if this synergism extends to 

mechanical and sensing performance. 

As is shown in Fig. 5d, the conductivity of nanocomposites is unchanged within 

the range of temperature from 20 to 80 °C, indicating that the conductivity of the 

nanocomposite is independent of temperature. This behavior is essential for the 

application and precision of sensors at different temperatures. 
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Figure 5 (a) Volume conductivity of CNT/TPU, GNP/TPU, and 

CNT/GNP(3:1)/TPU nanocomposites with different nanofiller content, (b) The curve 

of log conductivity  versus log (𝑓 − 𝑓𝑐) , (c) Volume conductivity of CNT/TPU, 

GNP/TPU, and CNT/GNP/TPU nanocomposites with 2 wt% nanofiller content and 

different nanofiller ratios, (d) Volume conductivity versus temperature, (e) Schematic 

illustration of the synergistic effect of CNT and GNPs on dispersion and conductive 

network formation.  
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Tensile properties 

The tensile properties of a printed composites have a significant effect on the 

performance of the sensor so it is important to assess tensile performance. Fig. 6a 

reveals that all the printed composites show a similar strain-stress curves. Furthermore, 

one can see a clear strain hardening behavior when the strain is over 200%. The 

results displayed in Fig. 6b show that, due to effective stress transfer to the high 

modulus nanofillers in the polymer matrix, the elastic modulus of CNT/TPU and 

GNP/TPU increases by 28.8 and 30.1%, respectively, compared with that of neat TPU 

(𝐸 = 14.5 MPa). The CNT/GNP(3:1)/TPU exhibits the highest modulus of 23.2 MPa 

which is an improvement of 60.1% over the TPU modulus. The enhancement in 

modulus is accompanied by an expected decrease in elongation at break (𝜀𝑏) with the 

largest drop being for the GNP/TPU (304.6% versus 710.3% for the TPU, a 57.1% 

reduction), as shown in Fig.6c. This can be mainly attributed to the smooth surface of 

the two-dimensional GNPs, resulting in fracture extension along the GNP/polymer 

interface. The CNT/GNP(3:1)/TPU exhibits the lowest reduction in elongation (𝜀𝑏 = 

540.3%) and highest tensile strength (σ𝑏 = 12.6 MPa from Fig.6d) thus preserving 

the synergistic effect observed in the electrical conductivity performance.  

Changes in tensile properties during cyclic loading/unloading play an important 

role in the stability of the strain sensor. From Fig. 6e-g, it can be seen that the 

nanocomposites exhibit clear mechanical hysteresis due to strain softening [26] and 

the Mullin’s effect [27] during cyclic stretching/releasing processes at large strains. 

The stress-strain curves of the nanocomposites show a significant change in the first 
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10 cycles under a strain of 100%, but they tend to be stable after that. As is shown in 

Fig. 6h, the mechanical hysteresis of the samples during stretching/releasing cycles is 

obtained by calculating the area of the curves. It can be observed that 

CNT/GNP(3:1)/TPU displays a smaller mechanical hysteresis than GNP/TPU and 

CNT/TPU nanocomposites, which is resulted from the improved dispersion of 

nanofillers in the TPU. 
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Figure 6 (a) Typical strain-stress curves, (b) elastic modulus, (c) elongation at 

break, and (d) tensile strength for the printed CNT/TPU, GNP/TPU, and 

CNT/GNP(3:1)/TPU nanocomposites with 2 wt% nanofillers, (e-g) Stress-strain 

curves and (h) mechanical hysteresis of the printed nanocomposites during 1000 

loading cycles at 100% strain. 

Electromechanical performance 

The gauge factor (GF) is often applied to quantify the sensitivity of strain sensors. 

GF is calculated according to Eq. (4) [28]. 

GF =
∆𝑅 𝑅0⁄

𝜀
                                                     (4) 

where 𝜀, 𝑅0 and 𝛥𝑅 are the tensile strain, the initial resistance and the resistance 

change under strain, respectively [29]. It should be noted that the printed sensors for 

further electromechanical performance have a total nanofiller content of 2 wt%. 

Fig. 7a presents the relation between 𝜀 and ΔR/R0 for the printed samples. The 

ΔR/R0 of the strain sensors gradually increases as the strain increases, indicating an 

obvious  strain sensing behavior. Although the CNT/TPU nanocomposite exhibits an 

excellent strain detectable range (from 0~250%) and linearity (R2 = 0.97 at the strain 

of 0~30%), its sensitivity is limited (GF = 5.67 at the strain of 30%). This effect is 

related to many CNT agglomerates in the polymer matrix. The GNP/TPU 

nanocomposites exhibit an outstanding sensitivity (GF = 67.31 at 30% strain), but the 

strain range (from 0~125%) and linearity (R2 = 0.76 at the strain of 0~30%) are 

significantly lower than those of CNT/TPU nanocomposites. Since they are 
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two-dimensional nanofillers, the GNPs do not generally interlace. Hence, the 

conductive network formed by GNPs is prone to deform and break during stretching. 

Still, it is observed that the CNT/GNP(3:1)/TPU nanocomposites exhibit a large strain 

range (from 0~250%), excellent linearity (R2 = 0.94 at the strain of 0~30%), and high 

sensitivity (GF = 31.82 at the strain of 30%). To highlight the properties of the 

CNT/GNP(3:1)/TPU strain sensor demonstrated in this paper, a comparison with the 

properties of other stain sensors publised recenlty is illustrated in Fig. 7b [20, 30-39]. 

As the values show, the sensor constructed in this work shows an excellent properties 

in both sensitivity (GF = 136327.4 at the strain of 250%) and detectable strain range. 

 

Figure 7 (a) Relation of the ΔR/R0 and strain for the strain sensors with different 

nanofillers, (b) Values of the GF and workable strain-sensing range for the 

CNT/GNP(3:1)/TPU strain sensor and for those recently reported in the literature.  

The strain sensing behavior of printed nanocomposites was further studied under 

cyclic stretching/releasing conditions at various strains with a frequency (𝜈) of 0.1 Hz. 

The results displayed in Fig. 8a-c reveal that the ΔR/R0 of the sensor changed 

consistently to the stretching/releasing cycles at strains (𝜀) of 5, 15, 30, and 50%, 

showing the ability of the sensor to detect multiple strain deformations. From Fig. 8a, 
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one can see that the ΔR/R0 of the CNT/TPU nanocomposite displays distinct “double 

peaks” during the cyclic stretching [31]. The “main peak” is related to the sensitivity 

at the maximum strain in a single loading cycle while the “shoulder peak” is caused 

by the competition between reconstruction and destruction of the conductive network 

over cyclic stretching. The mechanical hysteresis discussed above can be used to 

explain the phenomenon observed during cyclic stretching (Fig. 6e and h). Not all 

polymer chains move to their initial state after releasing [30]. This hysteresis destroys 

the conductive network formed by CNTs, generating more evident shoulder peaks as 

the strain increases [19]. These results show that the combination of CNTs and GNPs 

is also beneficial for good repeatability and stability of the resistance change of 

CNT/GNP(3:1)/TPU nanocomposites under different strains (Fig. 8b). As shown in 

Fig. 8c, during the cyclic loading of the GNP/TPU nanocomposite at a large strain (ε 

= 50%), the resistance in the second cycle increases significantly. The likely cause of 

this behavior is the slippage of GNPs during stretching, which causes an irreversible 

deformation of the conductive network. This finding is consistent with the large 

mechanical hysteresis of GNP/TPU during the first cycle of cyclic stretching (Fig. 6f 

and h). 

The ΔR/R0 of the strain sensor at 5% strain and various frequencies (𝜈 = 0.01, 

0.1, 0.2, and 1 Hz) was also studied, and the resutls are depicted in Fig. 8d-f. All the 

sensors show outstanding responses within the broad frequency range, highlighting 

the applicability of the sensor to monitor human activity at different frequencies. 

Notably, due to the decreased molecular mobility of polymer at high frequency, ΔR/R0 
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slightly increases with the increase in strain frequency.  

Additionally, cyclic loading/unloading tests (up to 3000 cycles) at small (5%) 

and large (100%) strains were carried out for the printed sensors at a frequency of 1 

Hz to investigate the repeatability and robustness of the strain sensor. The results are 

shown in Fig. 8g-l. Fig. 8g-i show that each sensor exhibits good stability during the 

3000 loading/unloading cycles at a small strain of 5%. The resistance of the 

CNT/TPU and GNP/TPU composites increased significantly during the 3000 

loading/unloading cycles at 100% strain, emphazing their relatively low stability and 

repeatability (Fig. 8j and l). However, from Fig. 8k, it is clear that the 

CNT/GNP(3:1)/TPU composites exhibits superior stability and more uniform signal 

responses compared to the CNT/TPU and GNP/TPU composites due to the improved 

dispersion of hybrid nanofillers. 
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Figure 8 Variation of ΔR/R0 for the strain sensors with different nanofillers 

under cyclic stretching/releasing processes at 5, 15, 30, and 50% strains and at a 

frequency of 0.1 Hz: (a) CNT/TPU, (b) CNT/GNP(3:1)/TPU, (c) GNP/TPU. Variation 

of ΔR/R0 for the strain sensors during cyclic loading at 5% strain and at frequencies of 

0.01, 0.1, 0.2, and 1 Hz: (d) CNT/TPU, (e) CNT/GNP(3:1)/TPU, (f) GNP/TPU. 

Stability of the strain sensors up to 3000 cycles at 5% strain and at a frequency of 1 
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Hz: (g) CNT/TPU, (h) CNT/GNP(3:1)/TPU, (i) GNP/TPU. Stability of the strain 

sensors up to 3000 cycles at 100% strain and at a frequency of 1 Hz: (j) CNT/TPU, (k) 

CNT/GNP(3:1)/TPU, (l) GNP/TPU. 

Modelling and mechanism  

A modelling study was conducted for the printed strain sensors to understand the 

strain sensing mechanism. From Fig. 9a, the total resistance (𝑅) of conductive 

polymer composites includes the resistance of the nanofillers (𝑅𝑐𝑛) and the tunnel 

resistance between two neighboring fillers (𝑅𝑡) [30]. The total resistance (𝑅) of the 

nanocomposites can be calculated by Eq. (5): 

𝑅 = 𝑅𝑐𝑛 + 𝑅𝑡 = (
𝐿

𝑁
) (

8𝜋ℎ𝑑

3𝛾𝑎2𝑒2) exp(𝛾𝑑)                            (5)  

𝛾 =
4𝜋√2𝑚𝜑

ℎ
                                                    (6) 

Where 𝑁 is the number of conductive pathways, 𝐿 is the number of nanofillers 

generating an individual conductive pathway, 𝑎2 is the effective cross-section area, 

𝑒 is the electron charge, ℎ is Planck’s constant, 𝑑 is the shortest distance between 

the conductive nanofillers, 𝜑 is the height of the potential barrier between nanofillers, 

and 𝑚 is the electron mass [13]. 

The distance between the nanofillers linearly increases from 𝑑0 to 𝑑 as the 

nanocomposite is stretched, which improves the resistance of the nanocomposite [40]. 

The shortest distance between the nanofillers can be calculated by Eq. 7. 

𝑑 = 𝑑0 (1 + C (
𝛥𝑙

𝑙0
)) = 𝑑0(1 + 𝐶𝜀)                                  (7) 

where 𝑙0  and ∆𝑙  represent the original length and deformation of the sensor, 
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respectively. 𝜀 is the strain, and 𝐶 is a constant varying with the composite systems 

[41]. 

A non-linear change in the number of conductive pathways (𝑁) under strains 

leads to a non-linear increase in resistance, which can be expressed as Eq. (8): 

𝑁 =
𝑁0

exp(𝑀𝜀+𝑊𝜀2+𝑈𝜀3+𝑉𝜀4)
                                          (8) 

where 𝑀, 𝑊, 𝑈, 𝑉 are constants, and 𝑁0 is the number of initial conductive paths. 

Eq. (9) can be given by substituting Eq. (8) and Eq. (7) into Eq. (5): 

𝑅 = 𝐵(1 + 𝐶𝜀) 𝑒𝑥𝑝[𝐴 + (𝑀 + 𝐴𝐶)𝜀 + 𝑊𝜀2 + 𝑈𝜀3 + 𝑉𝜀4]              (9) 

where 𝐴 = 𝛾𝑑0, 𝐵 =
8𝜋𝑛ℎ𝑑0

3𝛾𝑁0
2𝑒²𝑎²

, and 𝑛 is the total number of nanofillers (𝑛 = 𝐿 × 𝑁).  

Fig. 9b illustrates the fitting curves, which are very similar to the experimental 

curves for the resistance of the sensor. The fitted parameters (𝐴, 𝐵, 𝐶, 𝑀, 𝑊, 𝑈, 𝑉) 

are shown in Table S2 (Supporting Information). Fig. 9c and d exhibit the changes of 

conductive pathways (change of CP, 𝑦 =  𝑀𝑥 + 𝑊𝑥2  + 𝑈𝑥3  + 𝑉𝑥4) and tunneling 

distance (change of TD, 𝑦 =  𝐶𝑥), respectively. In summary, the change of TD 

increases linearly with increasing strain. Due to the slip of GNPs, the TD and CP 

changes of GNP/TPU nanocomposites are more obvious. On the other hand, the TD 

and CP changes of CNT/TPU nanocomposites are minimized due to CNTs 

entanglements. 
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Figure 9 (a) Schematic representation of the circuit diagram of strain sensor, (b) 

Experimental (dots) and theoretical (solid lines) curves for the resistance-strain relation 

of the printed sensors, Changes in the (c) conductive pathways and (d) tunneling 

distance versus strain for the strain sensors. 

Applications 

The high sensitivity and large detectable range of the CNT/GNP(3:1)/TPU 

sensor should enable it to monitor human activity, such as finger or wrist movements, 

facial expression changes, physiological activity, and speech recognition. Fig. 10a 

shows that the strain sensor can identify activities at different bending angles when 

fixed on the index finger. Increasing the bending angle of the finger from 0 to 90°, the 

ΔR/R0 of the sensor also increases. Fig. 10b shows the signal response of the strain 

sensor to wrist bending. The strain sensor also has the ability to recognize the facial 

expressions. To investigate the ability of the printed sensor to monitor facial 
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expression, the printed sensor was fixed on the upper eyelid and forehead with a 

bandage. As the results depicted in Fig. 10c show, the printed sensor can also be used 

to identify swallowing. When volunteers swallow, the sensor deforms due to muscle 

movements close to the esophagus, resulting in a significant change in the resistance 

of the sensor. From Fig. 10d, when the person blinked, the sensor responded clearly. 

When the facial expression recovered to the normal state, the ΔR/R0 got back to its 

original level. Due to the movement of abdominal muscles during breathing, strain 

sensors can be used to monitor the changes in the frequency of breathing, as shown in 

Fig. 10e. By attaching the sensor to the throat, the sensor can facilitate speech 

recognition by detecting the syllables of the words based on muscle movement (Fig. 

10f). 

 

Figure 10 Strain-sensing responses of the strain sensor to repetitive (a) finger 

bending, (b) wrist bending, (c) swallowing, (d) blinking, (e) normal and deep breath, 

and (f) speaking “go”, “belong”, and “important”. 
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Conclusions 

In this work, highly flexible strain sensors based on CNT/TPU, GNP/TPU, and 

CNT/GNP/TPU nanocomposites were fabricated by FFF 3D printing. The dispersion, 

printability, as well as the electrical, tensile, and sensing properties of the printed 

composites were systematically investigated. Due to the synergistic effect of CNTs 

and GNPs, the improved dispersion of CNTs in the TPU matrix was obtained, and the 

electrical and tensile properties of the 3D printed sensor were significantly enhanced. 

Compared with the GNP/TPU and CNT/TPU composite filaments, 

CNT/GNP(3:1)/TPU filaments exhibited outstanding elastic modulus and critical 

buckling pressure of (21.2 MPa and 8.2 kPa, respectively) at a total nanofiller content 

of 2 wt%. In addition, the CNT/GNP(3:1)/TPU composite showed higher strength 

(12.6 MPa) and tensile modulus (23.2 MPa), and comparative elongation (540.3%). 

The introduction of GNPs to the matrix generated a more complete conductive 

network in the final composite, which effectively reduced the percolation threshold 

from 1.98 to 1.42 wt%. Furthermore, the printed CNT/GNP(3:1)/TPU sensor 

exhibited an outstanding sensitivity (GF = 136327.4 at 250% strain), a large workable 

strain range (up to 250%), and good stability (3000 cycles). To analyze the 

mechanism of strain sensing, modelling based on tunnel theory was performed. A 

good agreement between the theoretical and experimental results was found. The 

ability of strain sensors to monitor limb motions, physiological activities, and speech 

recognition has also been demonstrated. This work offers an effective method for the 
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3D printing of high-performance flexible strain sensors with potential applications in 

human-computer interaction, smart wearable devices, and medical monitoring 

equipment. 
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