551 research outputs found

    North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    Get PDF
    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change

    A 65 k.y. time series from sediment-hosted glasses reveals rapid transitions in ocean ridge magmas

    Get PDF
    Studies of ocean ridge magmatism have been hampered by the difficulty in constructing time-series data over more than a few thousand years. Sediment rapidly covers newly formed ocean crust, and older rocks, even when recovered from fault scarps, cannot be dated accurately. Ridge eruptions, however, disperse pyroclastic glass over distances as far as 5 km, and these glasses have been shown to persist for thousands of years in on-ridge sediment push cores. Here we present data on such glasses from a piston core that impacted basement in much older (600 ka) sediment. The age of deposition was determined using established stratigraphic methods to date the host sediment, yielding an average sample resolution of a few thousand years and a continuous 65 k.y. time series. The new time-series data show systematic temporal variations in magma compositions related to a change to the dynamics of crustal storage, which led to greater extents of pre-eruptive differentiation. Shortly thereafter was a small but discernable shift toward more enriched primary melt compositions. These events coincide with the onset of enhanced crustal production, previously identified using seismic data and interpreted to reflect the capture of a hotspot by the ridge. These results show the long-term preservation of pyroclastic glasses and suggest that the construction of high-resolution volcanic stratigraphy over a million years or more may be possible at ocean ridges, using multiple piston cores that impact basement. Sediment-hosted glasses have the potential to transform ocean ridges from the volcanic setting with the worst time-series data to that with the best

    A Deep Eastern Equatorial Pacific Thermocline During the Last Glacial Maximum

    Get PDF
    The mean state and variability of the tropical Pacificis influenced by the depth of the thermocline. During the Last Glacial Maximum (~21,000 years ago), the zonal sea surface temperature gradient across the equatorial Pacific was reduced and productivity was generally lower than modern. To understand the thermocline depth’s role in determining the Last Glacial Maximum tropical mean state, we reconstruct the upper ocean δ18O profile from multiple species of planktic foraminifera. We synthesize existing records of surface and subsurface dwelling foraminifera to reconstruct the vertical δ18O gradient throughout the eastern equatorial Pacific. We find the thermocline was deeper during the Last Glacial Maximum than the Holocene throughout the eastern equatorial Pacific region. The thermocline depth’s role in the dynamic forcing of the cold tongue contributed to the reduced zonal SST gradient across the equatorial Pacific, decreased productivity, and presumably impacted El Niño-Southern Oscillation variability relative to the Holocene

    Millennial atmospheric CO2 changes linked to ocean ventilation modes over past 150,000 years

    Get PDF
    Ice core measurements show diverse atmospheric CO2 variations—increasing, decreasing or remaining stable—during millennial-scale North Atlantic cold periods called stadials. The reasons for these contrasting trends remain elusive. Ventilation of carbon-rich deep oceans can profoundly affect atmospheric CO2, but its millennial-scale history is poorly constrained. Here we present a well-dated high-resolution deep Atlantic acidity record over the past 150,000 years, which reveals five hitherto undetected modes of stadial ocean ventilation with different consequences for deep-sea carbon storage and associated atmospheric CO2 changes. Our data provide observational evidence to show that strong and often volumetrically extensive Southern Ocean ventilation released substantial amounts of deep-sea carbon during stadials when atmospheric CO2 rose prominently. By contrast, other stadials were characterized by weak ventilation via both Southern Ocean and North Atlantic, which promoted respired carbon accumulation and thus curtailed or reversed deep-sea carbon losses, resulting in diminished rises or even declines in atmospheric CO2. Our findings demonstrate that millennial-scale changes in deep-sea carbon storage and atmospheric CO2 are modulated by multiple ocean ventilation modes through the interplay of the two polar regions, rather than by the Southern Ocean alone, which is critical for comprehensive understanding of past and future carbon cycle adjustments to climate change

    Core correlations

    Get PDF

    Does community-based education increase students' motivation to practice community health care? - a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community-based education has been introduced in many medical schools around the globe, but evaluation of instructional quality has remained a critical issue. Community-based education is an approach that aims to prepare students for future professional work at the community level. Instructional quality should be measured based on a program's outcomes. However, the association between learning activities and students' attitudes is unknown. The purpose of this study was to clarify what learning activities affect students' attitudes toward community health care.</p> <p>Methods</p> <p>From 2003 to 2009, self-administered pre- and post-questionnaire surveys were given to 693 fifth-year medical students taking a 2-week clinical clerkship. Main items measured were student attitudes, which were: "I think practicing community health care is worthwhile" ("worthwhile") and "I am confident about practicing community health care" ("confidence") using a visual analogue scale (0-100). Other items were gender, training setting, and learning activities. We analyzed the difference in attitudes before and after the clerkships by paired <it>t </it>test and the factors associated with a positive change in attitude by logistic regression analysis.</p> <p>Results</p> <p>Six hundred forty-five students (93.1%), 494 (76.6%) male and 151(23.4%) female, completed the pre- and post-questionnaires. The VAS scores of the students' attitudes for "worthwhile" and "confidence" after the clerkship were 80.2 ± 17.4 and 57.3 ± 20.1, respectively. Both of the scores increased after the clerkship. Using multivariate logistic regression analysis, "health education" was associated with a positive change for both attitudes of "worthwhile" (adjusted RR: 1.71, 95% CI: 1.10-2.66) and "confidence" (1.56, 1.08-2.25).</p> <p>Conclusions</p> <p>Community-based education motivates students to practice community health care. In addition, their motivation is increased by the health education activity. Participating in this activity probably produces a positive effect and improves the instructional quality of the program based on its outcomes.</p

    Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials

    Get PDF
    Quaternary interglacials provide key observations of the Earth system's responses to orbital and greenhouse gas forcing. They also inform on the capabilities of Earth system models, used for projecting the polar ice-sheet and sea-level responses to a regional warmth comparable to that expected by 2100 C.E. However, a number of uncertainties remain regarding the processes and feedbacks linking climate, ice-sheet and sea-level changes during past warm intervals. Here, we delineate the major research questions that need to be resolved and future research directions that should be taken by the paleoclimate, sea-level and ice-sheet research communities in order to increase confidence in the use of past interglacial climate, ice-sheet and sea-level reconstructions to constrain future predictions. These questions were formulated during a joint workshop held by the PAGES-INQUA PALSEA (PALeo constraints on SEA level rise) and the PAGES-PMIP QUIGS (QUaternary InterGlacialS) Working Groups in September 2018.PAGE

    Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet

    Get PDF
    During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale Heliospheric Current Sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during Encounters 1, 4 and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with ‘switchbacks’. Thus, the PSP findings suggest that large-scale dynamics either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers) plays a critical role in triggering reconnection onset

    Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial.

    Get PDF
    Considerable ambiguity remains over the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results with an intensively dated Italian speleothem record and climate-model experiments. The strongest expression of climate variability occurred during the transitions into and out of the LIG. Our records also document a series of multi-centennial intra-interglacial arid events in southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial and temporal fingerprints of these changes indicate a reorganization of ocean surface circulation, consistent with low-intensity disruptions of the Atlantic meridional overturning circulation (AMOC). The amplitude of this LIG variability is greater than that observed in Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may have contributed to AMOC weakening and increased climate instability throughout the LIG
    • …
    corecore