21 research outputs found

    Design Constraints on a Synthetic Metabolism

    Get PDF
    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design

    The Emergence and Early Evolution of Biological Carbon-Fixation

    Get PDF
    The fixation of into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a “phylometabolic” tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than any modern pathway as a primitive universal ancestral form

    Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications

    Get PDF
    Less than half of the original two million square kilometers of the Cerrado vegetation remains standing, and there are still many uncertainties as to how to conserve and prioritize remaining areas effectively. A key limitation is the continuing lack of geographically-extensive evaluation of ecosystem-level properties across the biome. Here we sought to address this gap by comparing the woody vegetation of the typical cerrado of the Cerrado–Amazonia Transition with that of the core area of the Cerrado in terms of both tree diversity and vegetation biomass. We used 21 one-hectare plots in the transition and 18 in the core to compare key structural parameters (tree height, basal area, and above-ground biomass), and diversity metrics between the regions. We also evaluated the effects of temperature and precipitation on biomass, as well as explored the species diversity versus biomass relationship. We found, for the first time, both that the typical cerrado at the transition holds substantially more biomass than at the core, and that higher temperature and greater precipitation can explain this difference. By contrast, plot-level alpha diversity was almost identical in the two regions. Finally, contrary to some theoretical expectations, we found no positive relationship between species diversity and biomass for the Cerrado woody vegetation. This has implications for the development of effective conservation measures, given that areas with high biomass and importance for the compensation of greenhouse gas emissions are often not those with the greatest diversity

    A latent capacity for evolutionary innovation through exaptation in metabolic systems

    Full text link
    Some evolutionary innovations may originate non-adaptively as exaptations, or pre-adaptations, which are by-products of other adaptive traits. Examples include feathers, which originated before they were used in flight, and lens crystallins, which are light-refracting proteins that originated as enzymes. The question of how often adaptive traits have non-adaptive origins has profound implications for evolutionary biology, but is difficult to address systematically. Here we consider this issue in metabolism, one of the most ancient biological systems that is central to all life. We analyse a metabolic trait of great adaptive importance: the ability of a metabolic reaction network to synthesize all biomass from a single source of carbon and energy. We use novel computational methods to sample randomly many metabolic networks that can sustain life on any given carbon source but contain an otherwise random set of known biochemical reactions. We show that when we require such networks to be viable on one particular carbon source, they are typically also viable on multiple other carbon sources that were not targets of selection. For example, viability on glucose may entail viability on up to 44 other sole carbon sources. Any one adaptation in these metabolic systems typically entails multiple potential exaptations. Metabolic systems thus contain a latent potential for evolutionary innovations with non-adaptive origins. Our observations suggest that many more metabolic traits may have non-adaptive origins than is appreciated at present. They also challenge our ability to distinguish adaptive from non-adaptive traits

    Human genome variation and the concept of genotype networks

    Get PDF
    Genotype networks are a method used in systems biology to study the "innovability" of a set of genotypes having the same phenotype. In the past they have been applied to determine the genetic heterogeneity, and stability to mutations, of systems such as metabolic networks and RNA folds. Recently, they have been the base for re-conciliating the two neutralist and selectionist schools on evolution. Here, we adapted the concept of genotype networks to the study of population genetics data, applying them to the 1000 Genomes dataset. We used networks composed of short haplotypes of Single Nucleotide Variants (SNV), and defined phenotypes as the presence or absence of a haplotype in a human population. We used coalescent simulations to determine if the number of samples in the 1000 Genomes dataset is large enough to represent the genetic variation of real populations. The result is a scan of how properties related to the genetic heterogeneity and stability to mutations are distributed along the human genome. We found that genes involved in acquired immunity, such as some HLA and MHC genes, tend to have the most heterogeneous and connected networks; and we have also found that there is a small, but significant difference between networks of coding regions and those of non-coding regions, suggesting that coding regions are both richer in genotype diversity, and more stable to mutations. Together, the work presented here may constitute a starting point for applying genotype networks to study genome variation, as larger datasets of next-generation data will become available
    corecore