534 research outputs found

    The spatiotemporal neural dynamics underlying perceived similarity for real-world objects.

    Get PDF
    The degree to which we perceive real-world objects as similar or dissimilar structures our perception and guides categorization behavior. Here, we investigated the neural representations enabling perceived similarity using behavioral judgments, fMRI and MEG. As different object dimensions co-occur and partly correlate, to understand the relationship between perceived similarity and brain activity it is necessary to assess the unique role of multiple object dimensions. We thus behaviorally assessed perceived object similarity in relation to shape, function, color and background. We then used representational similarity analyses to relate these behavioral judgments to brain activity. We observed a link between each object dimension and representations in visual cortex. These representations emerged rapidly within 200 ms of stimulus onset. Assessing the unique role of each object dimension revealed partly overlapping and distributed representations: while color-related representations distinctly preceded shape-related representations both in the processing hierarchy of the ventral visual pathway and in time, several dimensions were linked to high-level ventral visual cortex. Further analysis singled out the shape dimension as neither fully accounted for by supra-category membership, nor a deep neural network trained on object categorization. Together our results comprehensively characterize the relationship between perceived similarity of key object dimensions and neural activity

    Calf health from birth to weaning. I. General aspects of disease prevention

    Get PDF
    Calfhood diseases have a major impact on the economic viability of cattle operations. This is the first in a three part review series on calf health from birth to weaning, focusing on preventive measures. The review considers both pre- and periparturient management factors influencing calf health, colostrum management in beef and dairy calves and further nutrition and weaning in dairy calves

    Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    Get PDF
    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training.NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds

    A mean field model for movement induced changes in the beta rhythm

    Get PDF
    In electrophysiological recordings of the brain, the transition from high amplitude to low amplitude signals are most likely caused by a change in the synchrony of underlying neuronal population firing patterns. Classic examples of such modulations are the strong stimulus-related oscillatory phenomena known as the movement related beta decrease (MRBD) and post-movement beta rebound (PMBR). A sharp decrease in neural oscillatory power is observed during movement (MRBD) followed by an increase above baseline on movement cessation (PMBR). MRBD and PMBR represent important neuroscientific phenomena which have been shown to have clinical relevance. Here, we present a parsimonious model for the dynamics of synchrony within a synaptically coupled spiking network that is able to replicate a human MEG power spectrogram showing the evolution from MRBD to PMBR. Importantly, the high-dimensional spiking model has an exact mean field description in terms of four ordinary differential equations that allows considerable insight to be obtained into the cause of the experimentally observed time-lag from movement termination to the onset of PMBR (~ 0.5 s), as well as the subsequent long duration of PMBR (~ 1-10 s). Our model represents the first to predict these commonly observed and robust phenomena and represents a key step in their understanding, in health and disease

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    Silent but Not Static: Accelerated Base-Pair Substitution in Silenced Chromatin of Budding Yeasts

    Get PDF
    Subtelomeric DNA in budding yeasts, like metazoan heterochromatin, is gene poor, repetitive, transiently silenced, and highly dynamic. The rapid evolution of subtelomeric regions is commonly thought to arise from transposon activity and increased recombination between repetitive elements. However, we found evidence of an additional factor in this diversification. We observed a surprising level of nucleotide divergence in transcriptionally silenced regions in inter-species comparisons of Saccharomyces yeasts. Likewise, intra-species analysis of polymorphisms also revealed increased SNP frequencies in both intergenic and synonymous coding positions of silenced DNA. This analysis suggested that silenced DNA in Saccharomyces cerevisiae and closely related species had increased single base-pair substitution that was likely due to the effects of the silencing machinery on DNA replication or repair

    The effects of emotional states and traits on time perception

    Get PDF
    Background: Models of time perception share an element of scalar expectancy theory known as the internal clock, containing specific mechanisms by which the brain is able to experience time passing and function effectively. A debate exists about whether to treat factors that influence these internal clock mechanisms (e.g., emotion, personal- ity, executive functions, and related neurophysiological components) as arousal- or attentional-based factors. Purpose: This study investigated behavioral and neurophysiological responses to an affective time perception Go/ NoGo task, taking into account the behavioral inhibition (BIS) and behavioral activation systems (BASs), which are components of reinforcement sensitivity theory. Methods: After completion of self-report inventories assessing personality traits, electroencephalogram (EEG/ERP) and behavioral recordings of 32 women and 13 men recruited from introductory psychology classes were completed during an affective time perception Go/NoGo task. This task required participants to respond (Go) and inhibit (NoGo) to positive and negative affective visual stimuli of various durations in comparison to a standard duration. Results: Higher BAS scores (especially BAS Drive) were associated with overestimation bias scores for positive stimuli, while BIS scores were not correlated with overestimation bias scores. Furthermore, higher BIS Total scores were associ- ated with higher N2d amplitudes during positive stimulus presentation for 280 ms, while higher BAS Total scores were associated with higher N2d amplitudes during negative stimuli presentation for 910 ms. Discussion: Findings are discussed in terms of arousal-based models of time perception, and suggestions for future research are considered
    corecore