66 research outputs found

    PCB pollution continues to impact populations of orcas and other dolphins in European waters

    Get PDF
    Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB "hotspots" for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas

    Imprinting of the Polycomb Group Gene MEDEA Serves as a Ploidy Sensor in Arabidopsis

    Get PDF
    Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed “triploid block.” Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in seeds with deviating parental contributions. We identified a mutant forming unreduced pollen that enabled us to investigate direct effects of unbalanced parental genome contributions on seed development and to reveal the underlying molecular mechanism of dosage sensitivity. We provide evidence that parent-of-origin–specific expression of the Polycomb group (PcG) gene MEDEA is causally responsible for seed developmental aberrations in Arabidopsis seeds with increased paternal genome contributions. We propose that imprinted expression of PcG genes is an evolutionary conserved mechanism to balance parental genome contributions in embryo nourishing tissues

    Genomic Analysis of Parent-of-Origin Allelic Expression in Arabidopsis thaliana Seeds

    Get PDF
    Differential expression of maternally and paternally inherited alleles of a gene is referred to as gene imprinting, a form of epigenetic gene regulation common to flowering plants and mammals. In plants, imprinting primarily occurs in the endosperm, a seed tissue that supports the embryo during its growth and development. Previously, we demonstrated that widespread DNA demethylation at remnants of transposable elements accompanies endosperm development and that a subset of these methylation changes are associated with gene imprinting. Here we assay imprinted gene expression genome-wide by performing high-throughput sequencing of RNA derived from seeds of reciprocal intraspecific crosses. We identify more than 200 loci that exhibit parent-of-origin effects on gene expression in the endosperm, including a large number of transcription factors, hormone biosynthesis and response genes, and genes that encode regulators of epigenetic information, such as methylcytosine binding proteins, histone methyltransferases, and chromatin remodelers. The majority of these genes are partially, rather than completely, imprinted, suggesting that gene dosage regulation is an important aspect of imprinted gene expression

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    Get PDF
    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms

    Structural studies of T4S systems by electron microscopy

    Get PDF
    Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an extremely challenging task taking into account their multi protein organisation and lack of overall global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray crystallography and cryo-electron microscopy. In this review we present a structural analysis of this dynamic complex based on recent advances in biochemical, biophysical and structural studies

    Latin American Consensus: Children Born Small for Gestational Age

    Get PDF
    72-87Cuatrimestra

    Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devices

    Get PDF
    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics

    American palm ethnomedicine: A meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many recent papers have documented the phytochemical and pharmacological bases for the use of palms (<it>Arecaceae</it>) in ethnomedicine. Early publications were based almost entirely on interviews that solicited local knowledge. More recently, ethnobotanically guided searches for new medicinal plants have proven more successful than random sampling for identifying plants that contain biodynamic ingredients. However, limited laboratory time and the high cost of clinical trials make it difficult to test all potential medicinal plants in the search for new drug candidates. The purpose of this study was to summarize and analyze previous studies on the medicinal uses of American palms in order to narrow down the search for new palm-derived medicines.</p> <p>Methods</p> <p>Relevant literature was surveyed and data was extracted and organized into medicinal use categories. We focused on more recent literature than that considered in a review published 25 years ago. We included phytochemical and pharmacological research that explored the importance of American palms in ethnomedicine.</p> <p>Results</p> <p>Of 730 species of American palms, we found evidence that 106 species had known medicinal uses, ranging from treatments for diabetes and leishmaniasis to prostatic hyperplasia. Thus, the number of American palm species with known uses had increased from 48 to 106 over the last quarter of a century. Furthermore, the pharmacological bases for many of the effects are now understood.</p> <p>Conclusions</p> <p>Palms are important in American ethnomedicine. Some, like <it>Serenoa repens </it>and <it>Roystonea regia</it>, are the sources of drugs that have been approved for medicinal uses. In contrast, recent ethnopharmacological studies suggested that many of the reported uses of several other palms do not appear to have a strong physiological basis. This study has provided a useful assessment of the ethnobotanical and pharmacological data available on palms.</p
    corecore