
Manuscript submitted to:            Volume 2, Issue 2, 184-199.  

AIMS Biophysics           DOI: 10.3934/biophy.2015.2.184 

Received date 20 March 2015, Accepted date 21 May 2015, Published date 15 June 2015 

 

Review 

Structural studies of T4S systems by electron microscopy 

Adam Redzej, Gabriel Waksman, and Elena V Orlova* 

Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, 

London WC1E 7HX, UK 

* Correspondence: Email: e.orlova@mail.cryst.bbk.ac.uk. 

Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA 

and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an 

extremely challenging task taking into account their multi protein organisation and lack of overall 

global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray 

crystallography and cryo-electron microscopy. In this review we present a structural analysis of this 

dynamic complex based on recent advances in biochemical, biophysical and structural studies.  
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1. Introduction 

All types of bacteria studied so far (Gram-negative, Gram-positive, cell wall-less bacteria) and a 

number of archaea have revealed the presence of specialised secretion systems that are vital for their 

survival, pathogenicity and ability to adapt to changes in the environment [1]. These macromolecular 

machineries are responsible for the transport of DNA and effector molecules across the cell envelope. 

Secretion systems found in bacteria are currently classified into seven major classes [2–7]. The 

variety of substrates secreted by type IV secretion (T4S) systems and their nature (single proteins, 

protein complexes, DNA and nucleoprotein complexes) singles out these secretion systems from the 

others and make them the most functionally versatile class. Many T4S systems have been shown to 
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inject (translocate) proteins into the cytosol of eukaryotic cells, where these proteins facilitate 

bacterial pathogenesis by specifically interfering with host cell function [2–12].  

Depending on their function, T4S systems can be divided into three major groups. The first 

group includes T4S systems that transfer DNA unidirectionally from donor to recipient cell in a 

contact dependent way. Another group of T4S systems mediates the translocation of proteins, 

ranging from small protein effectors to large protein complexes. Pathogenic Gram-negative bacteria 

such as Helicobacter pylori, Brucella suis and Legionella pneumophila use the T4S system to inject 

virulence proteins into mammalian host cells [8,9,10] while Bordetella pertussis use the T4S systems 

to secrete pertussis toxin into the extracellular milieu [11]. As a result they cause different types of 

diseases e.g. respiratory diseases-like “whooping cough”, chronic gastric disorders or tumour growth 

in plants.  The last and smallest group consists of T4S systems, which secrete or uptake DNA into or 

from the extracellular milieu, respectively. H. pylori and Neisseria gonorrhoeae are examples of 

bacteria with this type of T4S systems [12,13].  

The first type of translocation related to DNA greatly contributes to the spread of antibiotic 

resistant genes among bacterial species and allows them to adapt to environmental changes. 

Members of this group are called conjugative type IV secretion systems. The phenomenon of 

conjugation in bacteria is an enormous public-health problem since this mechanism allows rapid 

dissemination of antibiotic-resistant genes and other virulence behaviour among pathogens. While 

the fact that DNA can move from one cell to another was established a long time ago [14,15], the 

mechanism of secretion is still poorly understood. However, structural information recently obtained 

allows better understanding of the type IV secretion systems architecture [16]. The revelation of the 

principles of action of these bacterial nanomachines has broad clinical importance not only due to 

delivery of bacterial toxins or effector proteins straight into targeted host cells, but for the direct 

involvement in the rapid horizontal spread of antibiotic resistance genes among the microbial 

population. In this review we describe the latest progress in structural studies of the T4S system 

using methods of electron microscopy. 

2. Overall Organisation of the Type IV Secretion System 

All T4S systems are evolutionarily related and share some structural features such as a specific 

channel spanning the cell envelope, through which the secreting process occurs in an ATP-dependent 

manner [17]. Numerous T4S systems are organized similarly to the VirB/D4 Agrobacterium 

tumefaciens system, which is composed of 12 proteins VirB1-VirB11 and VirD4 [18]. This 

nomenclature is used throughout this review. These proteins assemble into a complex with three 

distinct substructures: pilus, secretion channel and coupling protein (Figure 1). Other T4S systems 

which have evolved additional subunits and might be structurally organized in a different way than 

the VirB/D4 A. tumefaciens system e.g. L. pneumophila Dot/Icm and H. pylori cag system are not 

discussed in this review.   
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Figure 1. Conserved gene architecture between A. tumefaciens VirB/D4, E. coli 

pKM101 plasmid and E.coli R388 plasmid T4S systems. 

The pilus is an extracellular appendage, which connects the donor and recipient cell during the 

DNA transfer—conjugation [1]. Pilus is built up from two proteins, the major subunit VirB2 and the 

minor subunit VirB5. While multiple copies of VirB2 form a rod like structure, VirB5 can be found 

at the tip of the pili [19,20]. VirB2 is a small hydrophobic protein, which is proteolytically processed 

at its termini and polymerizes into a pilus [21]. Alternatively following proteolysis the N-termius and 

C-terminus of VirB2 is fused resulting in a cyclic peptide [22]. VirB5 is a periplasmic protein with 

an N terminally located signal peptide sequence. In order for VirB5 to form a complex with VirB2, 

VirB4 is required [23]. By studying various complexes of VirB4 and VirB5 it has been proposed that 

VirB4 enable assembly of VirB2 with VirB5 by stabilizing VirB8 and VirB10 complex [23]. Also 

VirB4 mediates VirB2 assembly into the pilus by extraction from the IM [24]. The structure of 

VirB5 has been solved by X-ray crystallography [25].  

The secretion channel, which in Gram-negative bacteria spans both outer and inner membranes, 

is composed of an inner-membrane complex (IMC), attached to an outer-membrane core complex 

(OMCC) via a flexible stalk region (Figure 2). The OMCC is composed of 14 copies of 3 proteins 

VirB10, VirB9 and VirB7 [26]. It forms a channel, which is inserted in both inner and outer 

membrane, thereby spanning the whole bacterium envelope. Lipidation of VirB7 is required for 

anchoring of the OMCC in the outer membrane. The structural details of OMCC are discussed below. 

The organisation of the stalk region is yet to be defined. However, it has been suggested that it 

consists of the N-terminal extensions of VirB10 that stretches out from OMCC towards the inner 

membrane. Pillus subunits are also likely comprise part of the stalk, or at least pass through the stalk 

during the pilus polymerization reaction. The IMC contains proteins VirB3, VirB4, VirB6 and VirB8, 

present in 12, 12, 24 and 12 copies respectively [27] (Figures 1 and 2). VirB3 protein, which is an 

inner -membrane protein with both N- and C- terminus facing the cytoplasm, is the smallest 

component of the IMC. For its stability VirB3 requires the presence of VirB4, VirB7, VirB8. VirB3 
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has been recently shown to form a complex with VirB4 [28]. Interestingly, several genome-

sequencing studies have identified a fusion protein between VirB3 and VirB4. VirB6 is a polytopic 

inner membrane protein with a periplasmic N terminus, five transmembrane segments and a 

cytoplasmic C terminus [29]. It has been shown in immunofluorescence microscopy experiments that 

VirB6 localizes to cell poles. Additionally the co-localization of VirB6 with VirB3 and VirB9 has 

been documented [30]. The proposed function of VirB6 is to regulate T-pilus formation by 

interactions with VirB5. VirB6 protein also participates in the formation of a complex between 

VirB7 and VirB9 proteins. VirB8 is a bitopic protein with its N terminus localized in cytoplasm 

while the C terminus resides in the periplasm [31]. VirB8 interacts with VirB10 and VirB4 and 

positively regulates the stability of VirB1, VirB3, VirB4, VirB5, VirB6, VirB7 and VirB11 in the A. 

tumefaciens VirB/D4 system [32]. Structures of the periplasmic domain of VirB8 from Brucella suis 

and A. tumefaciens have been solved by X-ray crystallography [33,34]. VirB1 is responsible for the 

lysis of the peptidoglycan cell wall required for the type IV secretion complex insertion [28]. 

The IMC is powered by three hexameric ATPases on the cytosolic and IM sides: VirB4, VirB11 

and VirD4 [35] (Figures 1 and 2). VirB4 is the most conserved T4S system component [36]. 

Typically it has two domains, the C-terminal domain being more conserved and responsible for 

ATPase activity while the N-terminal domain is presumably used for the interactions with the IMC 

of the T4S system. However, VirB4 has only recently been identified within the assembled    

complex [27]. Even though in some cases transmembrane regions were predicted within the N-

terminal part of VirB4, the full-length protein was isolated from both membrane and cytoplasmic 

fractions. The oligomerization state of the protein remains unclear so far as it has been documented 

as monomeric, dimeric, trimeric, and hexameric complexes [36,37,38]. However, in a complex with 

other inner membrane components of the T4S system, VirB4 has been shown to form hexamers [27] 

(Figure 2). The crystal structure of the C-terminal domain of a homolog of VirB4 from a 

thermostable organism, Thermoanaerobacter pseudethanolicus, has been solved [36]. 

VirB11 is a soluble hexameric ATPase, which is divided into N- and C-terminal domains by a 

flexible linker [39]. As the closest structural homologues to VirB11 are AAA+ ATPases, which are 

involved in trafficking, it might be that VirB11 behaves like a chaperone, unfolding substrates and 

being involved in their translocation [40]. It has been suggested that VirB11 is regulating pilus 

biogenesis by interacting with VirB4 [35]. 

VirD4 is responsible for the recruitment of the substrate and is therefore often called a coupling 

protein. It is inserted into the inner membrane via two transmembrane helices [41,42]. VirD4 is 

known to interact in the cytosol with other ATPases VirB11 and VirB4 and with VirB10 in the IM. 

The crystal structure of the soluble part of VirD4 from R388 system reveals a hexameric       

structure [43]. 
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Figure 2. General organisation of the T4S system. On the cytosolic side, three 

ATPases: VirD4 (in yellow), VirB11 (in orange), VirB4 (in green). Localized in the 

inner membrane: polytopic VirB6 (in purple), bitopic VirB8 (in light purple) and 

VirB3 (in brown). OMCC components: VirB7 (in light blue), VirB9 (in blue), and 

VirB10 (in grey). Pilus subunits: VirB2 (in red) and VirB5 (in salmon). The lytic 

transglycosylase VirB1 (in light green). 

3. Electron Microscopy and Hybrid Methods in Analysis of the T4S System Structural 

Organisation  

Due to their intricacy multi-protein complexes are difficult candidates for structural studies, in 

particular when they are associated with membranes. In this case electron microscopy is the method 

of choice. This technique allows visualization of large complexes both within cells and in an isolated 

form under nearly native conditions [44]. The simplest way of examining the complexes in EM is 

negative staining (NS). The sample is spread on a support film and covered with a solution of NS 

(typically a salt of heavy atoms), which is more dense compared to the biological specimen         

itself [45]. This simple approach allows very quick examination of samples. However owing to the 

size of the stain grain, flattening effect due to drying at the time of sample preparation, and 
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sometimes partial staining of the specimen, many structural details in images remain obscured. In 

order to obtain high-resolution structures of macromolecular assemblies, cryo EM techniques are 

used [46] where a sample is nearly instantly frozen in aqueous solution at liquid nitrogen 

temperatures. This allows observing biological complexes close to their native conditions. Here we 

report analysis of T4S systems using both NS and cryo methods (Figures 3 and 4).  

 

Figure 3. NS-EM structures of the pKM101 OMCC (a) (EMD-5032), the partially 

trypsin-digested OMCC (b) (EMD-5033) and the fully trypsin-digested OMCC (c) 

(EMD-5034). (d) A side view and (e) a top view of the cryo-EM structure of 

pKM101 OMCC obtained at 15 Å resolution (EMD-5031). (f) Overlay of the fully 

trypsin-digested OMCC structure and the cryo-EM map of the pKM101 full length 

OMCC. 

4. Structure of the OMCC 

A first assembly of T4S systems that has been isolated and structurally characterized was the 

OMCC from pKM101 plasmid [26] (Figure 1). This large complex is composed of 14 copies of each 

proteins VirB7, VirB9 and VirB10 and has a molecular mass of ~1.1 MDa. The first NS EM 

reconstruction has revealed a ring like structure with 14-fold symmetry [26] (Figure 3a). Two layers 

can be clearly distinguished within this structure: the so-called O-layer consisting of a main body 

topped by a cap and the so-called I-layer below it. In order to identify the localization of the N-

terminus of VirB10 within the structure, the full-length OMCC was subjected to mild proteolysis. As 

a result, a truncated version of the OMCC was obtained with 156 amino acids cleaved from the N-

terminus of VirB10 using trypsin (Figure 3b). The only difference between the EM maps of the full 
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OMCC and the truncated complex is the disappearance of part of the base in the latter one. This 

indicates that the N-terminal part of VirB10 is localized at the base of the OMCC.  

The cryoEM structure of the full-length OMCC has been obtained at ~15 Å resolution and 

revealed more structural details [26] (Figure 3d–e). The structure clearly demonstrates a two-layer 

organisation: the upper layer, the 85 Å high O-outer and the 85 Å high I-inner layer, named referring 

to the position of the layers with respect to the outer and inner membranes. The overall dimensions 

of the complex are 185 Å both in width and length. Similarly to the negative stain structure of the 

OMCC, the O-layer includes a cap on top of a main body. The I-layer of the complex ends with a so-

called base. Both the I-layer and O-layer have the I-chamber and the O-chamber (Figure 3f). The 

internal wall of the O-chamber forms a 20 Å wide opening within the cap area, which narrows down 

to 10 Å on the top of the O-layer. The inner parts of the O- and I-chambers have a diameter of ~60 Å 

at widest points. The I-chamber narrows to 55 Å at its base [26] (Figure 3f). Further information 

about the localization of all the proteins within the OMCC has been obtained by digestion of the core 

complex with trypsin. This led to a formation of a ~500 kDa stable complex, where both VirB9 and 

VirB10 have been truncated at the N-terminus. The I-layer part of the OMCC was no longer present 

within the cryoEM reconstruction of the trypsin-digested complex (Figure 3c). Thus it has been 

concluded that the I-layer is exclusively composed of the N-terminal parts of VirB9 (VirB9NT) and 

VirB10 (VirB10NT). The position of the N-terminus of TraF/VirB10 has been localized within the 

base of the complex by antibody labelling [26].  

Later, an improved cryoEM map of the pKM101 full-length OMCC has been obtained at 12.4 Å 

resolution and revealed new features that were not identified previously [47] (Figure 1, Figure 4a,b). 

It has been found that the I-layer of the complex has a double-walled structure (Figure 4b). The inner 

wall diameter varies between 50 and 55 Å and is composed by 14 columns of density separated by 7 

Å (Figure 4c, d). The columns are ~8 Å in a diameter and 70 Å in height. The tops of the columns 

are connected to the O-layer, while their lower parts form the base of the OMCC. More details were 

revealed in the cryo-EM reconstruction of an elastase-digested OMCC that was obtained at an 8 Å 

resolution [47] (Figure 4c, d). This complex lacked the first 160 residues of VirB10. Similarly to the 

trypsin-digested complex, part of the base structure is not present in the elastase-digested OMCC. 

Moreover, the structures of the I-layer differ between the full-length and elastase-digested OMCC 

(Figure 4d–e). In the elastase-digested complex, the opening to the cytoplasmic side is wider −65 Å 

and the inner wall of the I-layer is not present (Figure 4e, d). The composition of the O-layer within 

the elastase-digested complex has been defined by fitting of the X-ray structure of the ternary 

complex between VirB7 and the C terminal domains of VirB10 (VirB10CT) and VirB9 (VirB9CT) 

(Figure 5a, b) In addition, three helical peptides have been identified based on the sequence of 

VirB10NT as well as two regions rich in β-strands within the VirB9NT and successfully fitted within 

the EM map of the full length OMCC. Two of the peptides derived from VirB10NT have been fitted 

within the inner wall of the I-layer whereas the remaining peptide was found within the base. At the 
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same time the VirB9NT  model has been nicely fitted within the outer wall of the I-layer of the map  

(Figure 5) [47]. 

 

Figure 4. Cryo‐EM structures of the pKM101 OMCC (EMD-2232) obtained at 12.4 

Å and elastase-digested pKM101 OMCC (EMD-2233). (a,b) Side view and a central 

section, respectively, of the cryo‐EM structure of the OMCC. (c,d)Side view and a 

central section, respectively, of the cryo‐EM structure of the elastase-digested 

OMCC. (e) Cutaway view of the superposition of the cryo-EM maps of the full-

length OMCC (blue) and elastase-digested OMCC (orange) complexes. (f) A cross 

section of the two superimposed structures in the area of the I-layer. Red oval and 

arrows indicate positions of columns of the inner wall. 

5. First Structural Insight into a Nearly Entire T4S Secretion Assembly 

The latest EM reconstruction of the nearly whole T4S system from the R388 plasmid, lacking 

only the ATPases VirB11 and VirD4 and the major pilus subunit VirB2, shed light into the 

architecture of the T4S apparatus. The ~3 MDa complex, hereafter called T4SS3-10 is composed of 8 

proteins. It has been expressed in E. coli and isolated from membranes using affinity purification and 
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finally visualized by NS-EM [27]. The reconstruction shows three distinct structural parts of the 

complex: OMCC, IMC and the stalk region that holds them together. The complex is 340 Å in length 

and 255 Å at its widest point (Figure 6).  

The structure of the OMCC within T4SS3-10 is consistent with the structure of the previously 

described OMCC of the pKM101 plasmid (Figure 1). Importantly the negative stain EM 

reconstruction of the R388 OMCC on its own is structurally similar to that of the pKM101 (Figures 

7a and 7b). 14-fold symmetry of the OMCC has been clearly identified, as well as its separation into 

two layers (I and O). Interestingly the OMCC within the T4SS3-10 has an inner central stalk that was 

not observed previously.  

.  

Figure 5. Structural organisation of the OMCC. (a) Four pKM101 VirB10CT 

subunits (PDB 3JQO) of the 14-mer present in the O-layer atomic structure are 

shown. One subunit is highlighted in blue. The density of one subunit column is 

shown in light green. A tentative docking of the three pKM101 VirB10NT α-helical 

regions is shown within this density. The connections are shown as dashed lines. (b) 

Central slice of OMCC with fitted O-layer atomic structure (in cyan, PDB 3JQO) 

and atomic models obtained for VirB9NT  from pKM101 plasmid (in dark red) and 

the α-helices predicted in VirB10NT  from pKM101 plasmid (PDB 2YPW). 

The IMC is formed of three main parts (Figure 6): the arches, the trans-membrane platform, and 

two barrel-like structures. Each of the barrels is composed of three tiers called L-tier, M-tier and U-

tier. Both L-tier and M-tier display 3 fold symmetry (Figures 6 and 7). The barrels are related by 

two-fold symmetry. Two T4S system components VirB4 and VirB6 have been localized within the 

barrel and the IMC platform, respectively, by gold labelling experiments  [27]. The length of a 

monomer of VirB4, corresponds to the length of the two barrels of IMC [27]. Indeed the recently 
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reported NS-EM reconstruction of the full-length VirB4 from the R388 plasmid shows high level of 

similarity with the two barrels present within the IMC [37]. Interestingly VirB4 in the absence of 

other T4S system components appears to be different in size, 165Å long, with a diameter between 

132 Å and 124 Å [37], compared to 134 Å in height and ~105 Å in diameter in the T4SS3-10 complex 

(Figure 6). 

 

Figure 6. The NS-EM structure of T4SS3-10 complex (EMD-2567) from R388. (a) 

side view. (b) top view and (c) side view  of the NS-EM reconstruction of VirB4 

from R388 plasmid (EMD-5505). 

6. Discussion and Future Directions 

Significant progress has been made in understanding the architecture of the T4SS during the last 

decade [16,18]. The intensive structural studies have revealed a very distinct organisation of this 

secretion apparatus that spans both inner and outer-membranes and have localised different subunits 

within its structure. It has been shown that the OMCC is formed even in the absence of other T4SS 

components [26]. Moreover the T4S system formation is initiated by the assembly of the OMCC, 

which serves as a scaffold for the assembly of all the rest of the T4S components [48,49]. This 

complex might serve as a seed for the assembly of the other T4SS components. Detailed examination 

of the complete and truncated OMCCs indicates that VirB10 spans the entire cell envelope. This 

finding supports the hypothesis that ATP-driven conformational changes within N-terminus of 

VirB10 could serve as a gating mechanism in the T4SS channel [50,51]. Unfortunately, very little is 
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known about the connection between T4S channel components and ATPases and the composition of 

the IMC in general. The only available information has been derived from the recently obtained NS-

EM reconstruction of the nearly complete T4SS from R388  [27] (Figure 7). However two ATPases, 

which are necessary for substrate recruitment and pilus biogenesis, VirD4  [52] and VirB11  [24], are 

not present within this structure. In order to understand the mechanism of substrate secretion, it is 

important to localize the missing ATPases with respect to the already assembled T4SS3-10 complex as 

well as observe if their presence impact the overall structure of the T4S system.  

 

Figure 7. Comparison of the cryo and NS structures. (a) Side view of the NS-EM 

structure of T4SS3-10 complex with fitted 14 TraF/VirB10CT subunits (PDB 3JQO) 

and the in silico model of the N-terminal domain of VirB9 from pKM101 (PDB 

3ZBJ). (b) The view along the vertical axis from the inner membrane end reveals 

clear 3-fold symmetry of the barrels. (c) Side view of the NS-EM structure of T4SS3-

10 complex with fitted cryo-EM structure of the OMCC (Figure 4) and the VirB4 

ATPase domain from T. pseudethanolicus (4AG5). (d) A cross section of the T4SS3-10 

complex in the area of the two barrels with fitted VirB4 ATPase domain. 
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The only information about the pathway of the substrate during the transfer so far comes from 

the A. tumefaciens VirB/D4 system  [53]. However the molecular details of this process are still 

unknown and further investigations are required to understand how the T4S system interacts with 

and transport substrates through the bacterial envelope. A role and function of the pilus also requires 

more structural and biochemical studies. These tasks represent a great challenge that can only be met 

by implementing novel biochemical and genetic approaches resulting in trapping T4S systems at 

different stages of substrate transfer. The revealed organisation of the T4S systems is very unusual: 

contrary to other secretion systems such as T6SS, or T3SS the T4S systems do not have a rigid 

organisation based on the rotational symmetry of their major components or helical          

organisation [54,55,56]. 

7. Conclusions 

Advances in the structural biology achieved by methods of electron microscopy helped to 

resolve structures of huge biological macromolecular complexes that are amenable to other structural 

methods. The combination of EM structures and biochemical approaches made possible localisation 

of important protein components within the structures and therefore provide validated suggestions on 

the T4S system possible mechanism of action. Hopefully the use of recently developed direct 

electron detection system, as well as improvement of the statistical analysis software in combination 

with novel biochemical methods will allow to elucidate the high resolution structure of the missing 

stalk region as well as the IMC with the ATPases  [57,58]. These structural studies will be crucial to 

gain a complete understanding of the mechanism of T4SSs.  
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