374 research outputs found

    Inhibition of Tendon Cell Proliferation and Matrix Glycosaminoglycan Synthesis by Non-Steroidal Anti-Inflammatory Drugs in vitro

    Get PDF
    The purpose of this study was to investigate the effects of some commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on human tendon. Explants of human digital flexor and patella tendons were cultured in medium containing pharmacological concentrations of NSAIDs. Cell proliferation was measured by incorporation of 3H-thymidine and glycosaminoglycan synthesis was measured by incorporation of 35S-Sulphate. Diclofenac and aceclofenac had no significant effect either on tendon cell proliferation or glycosaminoglycan synthesis. Indomethacin and naproxen inhibited cell proliferation in patella tendons and inhibited glycosaminoglycan synthesis in both digital flexor and patella tendons. If applicable to the in vivo situation, these NSAIDs should be used with caution in the treatment of pain after tendon injury and surgery

    Giant hydronephrosis mimicking progressive malignancy

    Get PDF
    BACKGROUND: Cases of giant hydronephroses are rare and usually contain no more than 1–2 litres of fluid in the collecting system. We report a remarkable case of giant hydronephrosis mimicking a progressive malignant abdominal tumour. CASE PRESENTATION: A 78-year-old cachectic woman presented with an enormous abdominal tumour, which, according to the patient, had slowly increased in diameter. Medical history was unremarkable except for a hysterectomy >30 years before. A CT scan revealed a giant cystic tumour filling almost the entire abdominal cavity. It was analysed by two independent radiologists who suspected a tumour originating from the right kidney and additionally a cystic ovarian neoplasm. Subsequently, a diagnostic and therapeutic laparotomy was performed: the tumour presented as a cystic, 35 × 30 × 25 cm expansive structure adhesive to adjacent organs without definite signs of invasive growth. The right renal hilar vessels could finally be identified at its basis. After extirpation another tumourous structure emerged in the pelvis originating from the genital organs and was also resected. The histopathological examination revealed a >15 kg hydronephrotic right kidney, lacking hardly any residual renal cortex parenchyma. The second specimen was identified as an ovary with regressive changes and a large partially calcified cyst. There was no evidence of malignant growth. CONCLUSION: Although both clinical symptoms and the enormous size of the tumour indicated malignant growth, it turned out to be a giant hydronephrosis. Presumably, a chronic obstruction of the distal ureter had caused this extraordinary hydronephrosis. As demonstrated in our case, an accurate diagnosis of giant hydronephrosis remains challenging due to the atrophy of the renal parenchyma associated with chronic obstruction. Therefore, any abdominal cystic mass even in the absence of other evident pathologies should include the differential diagnosis of a possible hydronephrosis. Diagnostic accuracy might be increased by a combination of endourological techniques such as retrograde pyelography and modern imaging modalities

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Lower limb biomechanics during running in individuals with Achilles tendinopathy: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal lower limb biomechanics is speculated to be a risk factor for Achilles tendinopathy. This study systematically reviewed the existing literature to identify, critique and summarise lower limb biomechanical factors associated with Achilles tendinopathy.</p> <p>Methods</p> <p>We searched electronic bibliographic databases (Medline, EMBASE, Current contents, CINAHL and SPORTDiscus) in November 2010. All prospective cohort and case-control studies that evaluated biomechanical factors (temporospatial parameters, lower limb kinematics, dynamic plantar pressures, kinetics [ground reaction forces and joint moments] and muscle activity) associated with mid-portion Achilles tendinopathy were included. Quality of included studies was evaluated using the Quality Index. The magnitude of differences (effect sizes) between cases and controls was calculated using Cohen's d (with 95% CIs).</p> <p>Results</p> <p>Nine studies were identified; two were prospective and the remaining seven case-control study designs. The quality of 9 identified studies was varied, with Quality Index scores ranging from 4 to 15 out of 17. All studies analysed running biomechanics. Cases displayed increased eversion range of motion of the rearfoot (d = 0.92 and 0.67 in two studies), reduced maximum lower leg abduction (d = -1.16), reduced ankle joint dorsiflexion velocity (d = -0.62) and reduced knee flexion during gait (d = -0.90). Cases also demonstrated a number of differences in dynamic plantar pressures (primarily the distribution of the centre of force), ground reaction forces (large effects for timing variables) and also showed reduced peak tibial external rotation moment (d = -1.29). Cases also displayed differences in the timing and amplitude of a number of lower limb muscles but many differences were equivocal.</p> <p>Conclusions</p> <p>There are differences in lower limb biomechanics between those with and without Achilles tendinopathy that may have implications for the prevention and management of the condition. However, the findings need to be interpreted with caution due to the limited quality of a number of the included studies. Future well-designed prospective studies are required to confirm these findings.</p

    Numerical simulation of skin transport using Parareal

    Get PDF
    In silico investigation of skin permeation is an important but also computationally demanding problem. To resolve all scales involved in full detail will not only require exascale computing capacities but also suitable parallel algorithms. This article investigates the applicability of the time-parallel Parareal algorithm to a brick and mortar setup, a precursory problem to skin permeation. The C++ library Lib4PrM implementing Parareal is combined with the UG4 simulation framework, which provides the spatial discretization and parallelization. The combination’s performance is studied with respect to convergence and speedup. It is confirmed that anisotropies in the domain and jumps in diffusion coefficients only have a minor impact on Parareal’s convergence. The influence of load imbalances in time due to differences in number of iterations required by the spatial solver as well as spatio-temporal weak scaling is discussed

    Localization and Characterization of STRO-1+ Cells in the Deer Pedicle and Regenerating Antler

    Get PDF
    The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama). In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR) were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1+ cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    High-Resolution, High-Contrast Optical Interface for Defect Qubits

    Get PDF
    Point defects in crystals provide important building blocks for quantum applications. Since we optically address these defect qubits, having an efficient optical interface is a highly important aspect. However, conventional confocal fluorescence microscopy of high-refractive-index crystals suffers from limited photon collection efficiency and spatial resolution. Here, we demonstrate high-resolution, high-contrast imaging of defects in diamonds using microsphere-assisted confocal microscopy. A microsphere provides an excellent optical interface for point defects with a magnified virtual image that increases the spatial resolution up to lambda/5, as well as the optical signal-to-noise ratio by four times. These features enable individual optical addressing of single photons and single spins of multiple defects that are spatially unresolved in conventional confocal microscopy, with improved signal contrast. Combined with optical tweezers, this system also demonstrates the possibility of positioning or scanning the microspheres. The approach does not require any complicated fabrication or additional optical systems, but uses simple, off-the-shelf micro-optics. From these distinctive advantages of microspheres, our approach provides an efficient way to image and address closely spaced defects with much better resolution and sensitivity

    Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa

    Get PDF
    Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25C,the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29C and 34C, about 3C and 7C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 298C and of savannah flies (Ghana) at 308C. Small temperature increases (less than 28C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 338C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions
    corecore