388 research outputs found

    Generalized matrix-based Bayesian network for multi-state systems

    Get PDF
    To achieve a resilient society, the reliability of core engineering systems should be evaluated accurately. However, this remains challenging due to the complexity and large scale of real-world systems. Such complexity can be efficiently modelled by Bayesian network (BN), which formulates the probability distribution through a graph-based representation. On the other hand, the scale issue can be addressed by the matrix-based Bayesian network (MBN), which allows for efficient quantification and flexible inference of discrete BN. However, the MBN applications have been limited to binary-state systems, despite the essential role of multi-state engineering systems. Therefore, this paper generalizes the MBN to multi-state systems by introducing the concept of composite state. The definitions and inference operations developed for MBN are modified to accommodate the composite state, while formulations for the parameter sensitivity are also developed for the MBN. To facilitate applications of the generalized MBN, three commonly used techniques for decomposing an event space are employed to quantify the MBN, i.e. utilizing event definition, branch and bound (BnB), and decision diagram (DD), each being accompanied by an example system. The numerical examples demonstrate the efficiency and applicability of the generalized MBN

    Advances in porous organic polymers for efficient water capture

    Get PDF
    Desiccant driven dehumidification for maintaining the proper humidity levels and atmospheric water capture with minimum energy penalty are important aspects in heat pumps, refrigeration, gas and liquid purifications, gas sensing, and clean water production for improved human health and comfort. Water adsorption by using nanoporous materials has emerged as a viable alternative to energy‐intensive industrial processes, thus understanding the significance of their porosity, high surface areas, vast pore volumes, chemical and structural features relative to the water adsorption is quite important. In this review article, important features of nanoporous materials are presented, including zeolites, porous carbons, as well as crystalline and amorphous porous organic polymers (POPs) to define the interactions between the water molecules and the polar/non‐polar functional groups on the surface of these nanoporous materials. In particular, focus is placed on the recent developments in POPs in the context of water capture as a result of their remarkable stability towards water and wide range of available synthetic routes and building blocks for their synthesis. We also highlighted recent approaches to increase the water sorption capacity of POPs by modifying their structure, morphology, porosity, and chemical functionality while emphasizing their promising future in this emerging area

    Coinfection of hepatitis A virus genotype IA and IIIA complicated with autoimmune hemolytic anemia, prolonged cholestasis, and false-positive immunoglobulin M anti-hepatitis E virus: a case report

    Get PDF
    A 37-year-old male presented with fever and jaundice was diagnosed as hepatitis A complicated with progressive cholestasis and severe autoimmune hemolytic anemia. He was treated with high-dose prednisolone (1.5 mg/kg), and eventually recovered. His initial serum contained genotype IA hepatitis A virus (HAV), which was subsequently replaced by genotype IIIA HAV. Moreover, at the time of development of hemolytic anemia, he became positive for immunoglobulin M (IgM) anti-hepatitis E virus (HEV). We detected HAV antigens in the liver biopsy specimen, while we detected neither HEV antigen in the liver nor HEV RNA in his serum. This is the first report of hepatitis A coinfected with two different genotypes manifesting with autoimmune hemolytic anemia, prolonged cholestasis, and false-positive IgM anti-HEV

    Phase II trial of daratumumab with DCEP in relapsed/refractory multiple myeloma patients with extramedullary disease

    Get PDF
    Extramedullary multiple myeloma (EMD) is an aggressive subentity of multiple myeloma (MM) with poor progno‑ sis. As more innovative therapeutic approaches are needed for the treatment of MM with EMD, we conducted this multicenter, non-randomized phase II trial of daratumumab in combination with dexamethasone, cyclophospha‑ mide, etoposide and cisplatin (DARA-DCEP). A total of 32 patients (median age 59, range 35–73) were treated with DARA-DCEP. Based on the best response during the study, the complete remission (CR) rate was 35.5% and overall response rate (ORR) 67.7%. During the median follow-up of 11 months, the median progression-free survival (PFS) was 5 months and median overall survival (OS) 10 months. There were 7 long-term responders whose median PFS was not reached. The most common grade≥3 hematologic AE was thrombocytopenia. The most common non-hematologic AE was nausea (22.6%), followed by dyspepsia, diarrhea and stomatitis (all 12.9%). Grade≥3 daratumumab infusionrelated reaction was noted in 9.7% of the patients. Except for the planned 30% dose adjustment in cycle 1, only 2 patients required DCEP dose reduction. This is one of the very few prospective trials focusing on EMD and we success‑ fully laid grounds for implementing immunochemotherapy in MM treatment.This work was supported by grants from the Korea Health Technolà ¢ ogy R&D Project through the Korea Health Industry Development Institute (KHIDI, HI14C1277)

    Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry

    Get PDF
    Hypertension or high blood pressure is one of the major independent risk factors for cardiovascular diseases. Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE) plays an important physiological role in regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, the inhibition of ACE activity is a major target in the prevention of hypertension. Recently, the search for natural ACE inhibitors as alternatives to synthetic drugs is of great interest to prevent several side effects and a number of novel compounds such as bioactive peptides, chitooligosaccharide derivatives (COS) and phlorotannins have been derived from marine organisms as potential ACE inhibitors. These inhibitory derivatives can be developed as nutraceuticals and pharmaceuticals with potential to prevent hypertension. Hence, the aim of this review is to discuss the marine-derived ACE inhibitors and their future prospects as novel therapeutic drug candidates for treat hypertension
    corecore